Presentation is loading. Please wait.

Presentation is loading. Please wait.

Alexander Aleksandrov Oak Ridge National Laboratory

Similar presentations


Presentation on theme: "Alexander Aleksandrov Oak Ridge National Laboratory"— Presentation transcript:

1 Alexander Aleksandrov Oak Ridge National Laboratory
Spallation Neutron Source Project: Commissioning Results, First Operation Experience, and Upgrade Plans Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

2 Neutrons probe a broad range of length scales
Neutron scattering A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

3 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Spallation-Evaporation Production of Neutrons Fission chain reaction continuous flow 1 neutron/fission Spallation no chain reaction pulsed operation 30 neutrons/proton Time resolved exp. A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

4 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
The Spallation Neutron Source The SNS began operation in 2006 At 1.4 MW it will be ~7x ISIS, the world’s leading pulsed spallation source The peak neutron flux will be ~20-100x ILL SNS will be the world’s leading facility for neutron scattering It will be a short drive from HFIR, a reactor source with a flux comparable to the ILL A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

5 The Spallation Neutron Source Partnership
SNS-ORNL Accelerator systems: ~167 M$ ~20 M$ ~113 M$ ~106 M$ ~177 M$ ~60 M$ At peak : ~500 People worked on the construction of the SNS accelerator ~63 M$ Oak Ridge, TN 35° 49' N , 83° 59' W A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

6 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Spring 1999 A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

7 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Spring 2000 A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

8 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Spring 2001 A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

9 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Spring 2002 A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

10 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Spring 2003 A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

11 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Spring 2006 A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

12 SNS Accelerator Complex
Front-End: Produce a 1-msec long, chopped, low-energy H- beam LINAC: Accelerate the beam to 1 GeV Accumulator Ring: Compress 1 msec long pulse to 700 nsec H- stripped to protons Deliver beam to Target 2.5 MeV 86.8 MeV 186 MeV 387 MeV 1000 MeV Ion Source RFQ DTL CCL SRF, b=0.61 SRF, b=0.81 Chopper system makes gaps 945 ns Current 1ms mini-pulse Current 1 ms macropulse A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

13 The SNS Target: 2-MW Design
Cavitation-induced pitting is an issue. Options for mitigation: Materials, Geometry 25 kJ/pulse at 7x15cm beam size sets of transverse and longitudinal shock wave. Needs to be exchanged every 3 month Pits on inner surface in this geometry 1 mm A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

14 17 Instruments Now Formally Approved
Fundamental Physics to Engineering Chemistry to “Genomes to Life”

15 The SNS Main Parameters
A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

16 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Front End (injector) 65 kV, 45 mA H- ion source Electrostatic LEBT with pre-chopper 2.5 MeV MHZ RFQ 3.6 m long MEBT with chopper and beam diagnostics A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

17 402.5 MHz Drift Tube Linac (DTL)
DTL accelerates beam to 87 MeV System includes 210 drift tubes in six separate tanks (37m total length) Inside drift tubes: permanent magnet quadrupoles, electromagnetic dipole correctors, strip-line beam position monitors (BPM) A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

18 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Drift Tube Linac in the tunnel A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

19 805 MHz Coupled-Cavity Linac (side coupled)
Bridge Coupler 44 final machining CCL accelerates beam to 187 MeV System consists of 48 accelerating segments, 48 quadrupoles, 32 steering magnets and diagnostics (55 m total length) A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

20 Coupled-Cavity Linac in the tunnel
A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

21 805MHz Super Conducting RF Linac (SCL)
SCL accelerates beam from 187 to 1000 MeV 81 6-cell superconducting cavities in 23 cryo-modules (157m) Cavities are operated at 2.1K or 4.2K Two cavities geometries are used to cover broad range in particle velocities Cavities are assembled into strings Medium beta cavity High beta cavity A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

22 Superconducting Cavity Performance
Nr of Cavities Nr of Cavities A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

23 Super Conducting Linac in the Tunnel
A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

24 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
High-Power RF Systems Compact High Voltage Converter Modulators using solid state devices (IGBT) High-Power RF System: klystrons, waveguides, circulators MHz 2.5 MW klystrons 4 CCL 5 MW Klystrons 81 SCL 550 kW klystrons A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

25 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
Digital Low Level RF system Cavity field and phase droop with feedback alone (left) and feedback + feedforward (right) beam loading compensation. Phase width of the bunch along the pulse with feedback alone (left) and feedback + feedforward (right) A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

26 SNS Central Helium Liquefying Facility
Cold box specifications are: 8300 Watts on the shield Kelvin 15g/s Liquefaction A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

27 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
The SNS Accumulator Ring Circumference m Energy GeV Revolution period μs Number of turns Final Intensity x1014 Peak Current A Number of magnets >300 (bend and focusing) A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

28 Ring Installation Progress
A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

29 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
SNS Liquid Mercury Target A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

30 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
SNS Remote Handling Manipulators A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

31 Commissioning Timeline
2002 2003 2004 2005 2006 Front-End DTL/CCL SCL DTL Tank 1 DTL Tanks 1-3 Ring Target A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

32 5x1013/pulse Protons Delivered to the Target
Ring Beam Current Monitor Beam on Target View Screen Final RTBT Beam Current Monitor A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

33 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk
1st “Production Run” A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

34 Transition to Operation
FY07 FY08 FY09 A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk

35 The SNS Power Upgrade Main Parameters
A. Aleksandrov RuPAC Sept. 10 – 14, Novosibirsk


Download ppt "Alexander Aleksandrov Oak Ridge National Laboratory"

Similar presentations


Ads by Google