Download presentation
Presentation is loading. Please wait.
Published byJason Tate Modified over 9 years ago
1
1. М. С. Лифшиц, ЖЭТФ (1957). 2. U.Fano, Phys. Rev. 124, 1866 (1961). 3. H. Feshbach,, Ann. Phys. (New York) 5 (1958) 357; 19 (1962) 287. 4. C. Mahaux, H.A. Weidenmuller, (Shell-Model Approach to Nuclear Reactions), North-Holland, Amsterdam, 1969. 5. I.Rotter, Rep. Prog. Phys., 54, 635 (1991). 6. S.Datta, (Electronic transport in mesoscopic systems) (1995). 7. S. Albeverio, et al J.Math. Phys. 37, 4888 (1996). 8. Y.V. Fyodorov and H.-J. Sommers, J. Math. Phys. 38, 1918 (1997) 9. F. Dittes, Phys. Rep. (2002). 10. Sadreev and I. Rotter, J.Phys.A (2003). 11. J. Okolowicz, M. Ploszajczak, and I. Rotter, Phys. Rep. 374, 271(2003). 12. D.V. Savin, V.V. Sokolov V.V., and H.-J. Sommers, PRE (2003). 13. Sadreev, J.Phys.A (2012). Coupled mode theory (оптика) H.A.Haus, (Waves and Fields in Optoelectronics) (1984). C. Manolatou, et al, IEEE J. Quantum Electron. (1999). S. Fan, et al, J. Opt. Soc. Am. A20, 569 (2003). S. Fan, et al, Phys. Rev. B59, 15882 (1999). W. Suh, et al, IEEE J. of Quantum Electronics, 40, 1511 (2004). Bulgakov and Sadreev, Phys. Rev. B78, 075105 (2008). Подход эффективного гамильтониана
2
Coupled defect mode with propagating over waveguide light Manolatou, et al, IEEE J. Quant. Electronics, (1999)
3
Coupled mode theory Одно модовый резонатор
4
CMT Х. Хаус, Волны и поля в оптоэлектронике Одно-модовый резонатор Инверсия по времени
5
CMT Много-модовый резонатор 40, 1511 (2004) IEEE J. Quantum Electronics, 40, 1511 (2004)
6
Два порта, две моды %CMT for transmission through resonator with two modes clear all E=-2:0.01:2; D=[sqrt(0.1) sqrt(0.25) sqrt(0.1) sqrt(0.25)]; G=0.5*D'*D; H0=diag([-0.25 0.25]); H=H0-1i*G; for j=1:length(E) Q=E(j)*diag([1 1])-H; in=[1; 0]; IN=1i*D'*in; A=Q\IN;; A1(j)=A(1); A2(j)=A(2); t(:,j)=-in+D*A; end
7
T волновод с двумя резонаторами, Булгаков, Садреев, Phys. Rev. B84, 155304 (2011)
8
W is matrix NxM where N is the number of eigen states of closed quantum system, M is the number of continuums (channels)
9
S.Datta, (Electronic transport in mesoscopic systems) (1995).
10
Уравнение Липпмана-Швингера Проекционные операторы :
12
S-matrix Basis of closed billiard The biorthogonal basis
13
c H.-W.Lee, Generic Transmission Zeros and In-Phase Resonances in Time-Reversal Symmetric Single Channel Transport, Phys. Rev. Lett. 82, 2358 (1999)
14
2d case Limit to continual case
15
Matlab calculation Na=input('input length along transport Na=') Nb=input('input length cross to transport Nb=') Nin=input('input numerical position of the input lead Nin=') Nout=input('input numerical position of the output lead Nout=') NL=length(Nin); NR=length(Nout); vL=1; vR=vL; tb=1; %Leads E=-2.9:0.011:1; HL=zeros(NL,NL); HL=HL-diag(ones(1,NL-1),1); HL=HL+HL'; HL=HL-diag(sum(HL),0); for np=1:NL kpp=acos(-E/2+EL(np,np)/2); kp(np,1:length(E))=kpp; end HR=HL; %Dot N=Na*Nb; HB=zeros(N,N); HB=HB-diag(ones(1,N-1),1)-diag(ones(1,N-Na),Na); HB(Na:Na:N-Na,Na+1:Na:N-Na+1)=0; HB=tb*(HB+HB'); %Coupling matrix psiBin=psiB(Nin,:); psiBout=psiB(Nout,:); WL=vL*psiBin'*psiL'; WR=vR*psiBout'*psiL'; DB=diag(ones(Na*Nb,1)); for j=1:length(E) g=diag(exp(i*kp(:,j))); gg=diag(sin(real(kp(:,j))).^0.5); WW=WL*g*WL'+WR*g*WR'; Heff=diag(EB)-WW; QQ=DB*E(j)-Heff; PP=QQ^(-1); SS=2*i*(WL*gg)'*PP*WR*gg; t(n,j)=SS(1,1); psS=psiB*PP*WL;
16
Datta’s site representation
17
Effective Hamiltonian for time-periodic case For stationary case
18
Волновая функция полубесконечного m-го провода N=1
19
Numerical results N=1 m=-1, 0, 1 21 quasi energies BS, J. Phys. C (1999): Критерий применимости теории возмущений H. Fukuyama, R. A. Bari, and H.C. Fogedby, PRB (1973). v C =0.25
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.