Download presentation
Presentation is loading. Please wait.
Published byMarlene Murphy Modified over 9 years ago
1
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008
2
Overview Quantum noise in gravitational wave detectors Generation of squeezed states Using squeezing in a gravitational wave detector Frequency dependent squeezing Generation of squeezing in the gravitational wave frequency band Best squeezing measurements so far Squeezed light in GEO600 S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 2
3
A simple gravitational wave detector 3S. ChelkowskiWG1 Meeting, Birmingham 07/2008
4
S. ChelkowskiWG1 Meeting, Birmingham 07/20084 Quantum noise limited sensitivity Shot NoiseRadiation Pressure Noise factor 100 in power = factor 10 in sensitivity = factor 1000 in event rate
5
S. ChelkowskiWG1 Meeting, Birmingham 07/20085 Squeezed light enhanced interferometer
6
S. ChelkowskiWG1 Meeting, Birmingham 07/20086 Squeezed light enhanced interferometer 20dB of squeezing = factor 10 in sensitivity = factor 1000 in event rate
7
S. ChelkowskiWG1 Meeting, Birmingham 07/20087 Amplitude-Quadrature Phase-Quadrature Heisenberg uncertainty relation An explanation of squeezing coherent state squeezed state
8
S. ChelkowskiWG1 Meeting, Birmingham 07/20088 Vacuum Noise
9
S. ChelkowskiWG1 Meeting, Birmingham 07/20089 Squeezed Vacuum
10
S. ChelkowskiWG1 Meeting, Birmingham 07/200810 Strong interaction between seed- and pump field MgO:LiNbO 3 – crystal as nonlinear material Phase matching via temperature Fractions in phase get amplified, out of phase deamplified OPA - optical parametric amplification 1064nm532nm
11
S. ChelkowskiWG1 Meeting, Birmingham 07/200811 MgO:LiNbO3 2 x 2.5 x 6.5mm 7% doping bikonvex or plane/konvex rc=8mm coatings @ 1064 and 532nm Side A: AR (R < 0.05%) Side B: HR (R > 99.98%) hemilithic Resonator @ 1064nm coupling mirror R = 96.7% Finesse = 180 FSR = 3.9GHz phasematching temp. ~65°C temp. stabilized via peltier elements New oven design
12
S. ChelkowskiWG1 Meeting, Birmingham 07/200812 Dark Noise Broadband squeezing up to 30MHz Relaxation oscillation of the Laser Vacuum noise Squeezing results from a normal OPA
13
Squeezing in a real gravitational wave detector S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 13
14
S. ChelkowskiWG1 Meeting, Birmingham 07/200814 GEO600
15
S. ChelkowskiWG1 Meeting, Birmingham 07/200815 Quantum noise in GEO600
16
S. ChelkowskiWG1 Meeting, Birmingham 07/200816 Reducing the quantum noise
17
S. ChelkowskiWG1 Meeting, Birmingham 07/200817 68% amplitude squeezing Reducing the quantum noise
18
S. ChelkowskiWG1 Meeting, Birmingham 07/200818 Reducing the quantum noise
19
S. ChelkowskiWG1 Meeting, Birmingham 07/200819 Effect of a detuned filter cavity Squeezed Vacuum Interaction with a cavity
20
S. ChelkowskiWG1 Meeting, Birmingham 07/200820 amplitude squeezing +45°-45° Reducing the quantum noise
21
S. ChelkowskiWG1 Meeting, Birmingham 07/200821 Reducing the quantum noise
22
Frequency-dependent squeezed light How can we create it? S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 22
23
S. ChelkowskiWG1 Meeting, Birmingham 07/200823 Chelkowski et al.,PRA 71, 013806 (2005) Frequency-dependent squeezing 67% Detuned locked to +15MHz
24
S. ChelkowskiWG1 Meeting, Birmingham 07/200824 Chelkowski et al.,PRA 71, 013806 (2005) Squeezing Vacuum Noise Anti-Squeezing Phase quadrature Amplitude quadrature Frequency-dependent squeezing
25
A rotating squeezing ellipse – FC detuning +15MHz S. ChelkowskiWG1 Meeting, Birmingham 07/200825 Chelkowski et al.,PRA 71, 013806 (2005)
26
A rotating squeezing ellipse – FC detuning +15MHz S. ChelkowskiWG1 Meeting, Birmingham 07/200826 Chelkowski et al.,PRA 71, 013806 (2005)
27
S. ChelkowskiWG1 Meeting, Birmingham 07/200827 Chelkowski et al.,PRA 71, 013806 (2005) +15 MHz -15 MHz Angle of the squeezing ellipse
28
Generation of squeezed light on the gravitational wave frequency band S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 28
29
S. ChelkowskiWG1 Meeting, Birmingham 07/200829 Generic squeezing from an OPA Dark Noise broadband Squeezing up to 30MHz Relaxation oscillation of the Lasers Vacuum noise
30
S. ChelkowskiWG1 Meeting, Birmingham 07/200830 Seed field carries technical noise from the laser. Technical noise is imprinted onto the squeezed field. Seed field is needed for the generation of error signals. OPA – optical parametric amplification
31
S. ChelkowskiWG1 Meeting, Birmingham 07/200831 Seed field is a control field
32
S. ChelkowskiWG1 Meeting, Birmingham 07/200832 OPA without seed turns into an OPO
33
S. ChelkowskiWG1 Meeting, Birmingham 07/200833 Setup for low frequency squeezing homodyne angle squeezing angle
34
S. ChelkowskiWG1 Meeting, Birmingham 07/200834 Setup for low frequency squeezing homodyne angle squeezing angle
35
S. ChelkowskiWG1 Meeting, Birmingham 07/200835 Setup for low frequency squeezing homodyne angle squeezing angle
36
S. ChelkowskiWG1 Meeting, Birmingham 07/200836 Setup for low frequency squeezing homodyne angle squeezing angle
37
Measured vacuum noise 37 vacuum noise for 176µW vacuum noise for 88µW vacuum noise for 44µW 3dB S. ChelkowskiWG1 Meeting, Birmingham 07/2008
38
Measured squeezed vacuum noise 38 vacuum noise for 88µW squeezed vacuum noise Chelkowski et al., PRA 75, 043814 (2007) ~6dB S. ChelkowskiWG1 Meeting, Birmingham 07/2008
39
Squeezed vacuum enhanced Michelson interferometer S. ChelkowskiWG1 Meeting, Birmingham 07/200839
40
Best squeezing measurements so far S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 40
41
Optical layout S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 41 Vahlbruch et al. PRL 100, 033602 (2008)
42
Measured squeezing S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 42 Vahlbruch et al. PRL 100, 033602 (2008)
43
Squeezed light in GEO600 S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 43
44
S. ChelkowskiWG1 Meeting, Birmingham 07/200844 GEO HF: Detuned Signal Recycling
45
S. ChelkowskiWG1 Meeting, Birmingham 07/200845 GEO HF: Tuned Signal Recycling
46
S. ChelkowskiWG1 Meeting, Birmingham 07/200846 Do we need a filter cavity?
47
Conclusion Squeezed light can be used to reduces the quantum noise in gravitational wave detectors Reflection at a detuned cavity creates frequency dependent light Without a filter cavity, tuned signal recycling is the best choice All needed techniques for the implementation of squeezed light into a gravitational wave detector are developed S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 47
48
Appendix S. ChelkowskiWG1 Meeting, Birmingham 07/2008Slide 48
49
49 GEO 600 Layout GEO 600:
50
50 3dB SQZ: 6dB SQZ: GEO HF Layout: short 8m Filter Cavity
51
51 3dB SQZ: 6dB SQZ: GEO HF Layout: long 1200m Filter Cavity
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.