Download presentation
Presentation is loading. Please wait.
Published byDenis Edgar Wilson Modified over 9 years ago
1
S KYLINE Q UERY P ROCESSING OVER J OINS. Akrivi Vlachou1, Christos Doulkeridis1, Neoklis Polyzotis SIGMOD 2011
2
OUTLINE Introduction Preliminaries Early Termination The SFSJ Algorithm Experimental Evaluation Conclusions 2
3
I NTRODUCTION 3
4
( CONT.) Propose a novel algorithm for efficiently computing the skyline set of a join without generating all the join tuples and without accessing all tuples of and. 4
5
P RELIMINARIES R: relation. : a set of numerical attributes in the schema of R. :tuples in R. with respect to : 5
6
(CONT.) == {Price,Rating} and = {Distance,Quality} Assum any attribute is the inteval [0,1] 6
7
(CONT.) x=A, group skyline: R2 x=B, group skyline: R1,R3 skyline:R2 7 RIDDistance1/QualityLocation R11001B R2100¼A R3200½B R42001A
8
(CONT.) 8 PIDPriceJoin Attr. P1100B P2500A P3400B P4500A QIDQualityJoin Attr. Q11B Q24A Q32B Q41A
9
E ARLY T ERMINATION Assume each relation is accessed one tuple at a time, in an ascending order according to the following function: Check Inadequacy of Existing Techniques: have to join all possible tuples. 9
10
(C ONT.) 10 Join,threshold x=0.3, pruned tuple fmin>=0.3
11
(C ONT.) 0.10.3 0.10.8 0.350.2 0.60.2 11 SaLSa need to join all tuple but it may be not skyline.
12
(C ONT.) Condition for Early Te:rmination: 12
13
(C ONT.) 13 =0.3
14
(C ONT.) 14
15
(C ONT.) 15
16
(C ONT ) 16
17
(C ONT.) exist join value=B in = SKY( ) ={ (Join Value=A), (Join Value = B)} exist join value=A in = exist join value=B in = 17
18
(C ONT.) =( 0.1, 0.1, 0.2, 0.2 ) =( 0.2, 0.3, 0.1, 0.5 ), } 18
19
T HE SFSJ A LGORITHM SFSJ( Sort-First-Skyline-Join) Algorithm 19
20
(C ONT.) 20
21
(C ONT.) i=1,j=2 insert Add to, 21 Iteration 1
22
(C ONT.) i=1,j=2 insert Add to, 22 Iteration 1
23
(C ONT.) i=2,j=1 insert Add to, 23 Iteration 2
24
(C ONT.) i=2,j=1 insert Add to, 24 Iteration 2
25
(C ONT.) i=1,j=2 insert 25 Iteration 3
26
(C ONT.) i=1,j=2 insert add to 26 Iteration 3
27
(C ONT.) i=1,j=2 insert add to 27 Iteration 3
28
(C ONT.) i=1,j=2 insert add to 28 Iteration 3
29
(C ONT.) i=1,j=2 insert halt :false ( no SKY( ) join ) 29 Iteration 3
30
(C ONT.) i=1,j=2 insert add to, 30 Iteration 3
31
(C ONT.) i=1,j=2 insert add to, 31 Iteration 3
32
(C ONT.) i=2,j=1 insert Add to 32 Iteration 4
33
(C ONT.) i=2,j=1 insert Add to 33 Iteration 4
34
(C ONT.) i=2,j=1 insert Add to, 34 Iteration 4
35
(C ONT.) i=2,j=1 insert Add to, 35 Iteration 4
36
(C ONT.) i=1,j=2 insert Add to 36 Iteration 5
37
(C ONT.) i=1,j=2 insert Add to 37 Iteration 5
38
(C ONT.) i=2,j=1 insert Add to 38 Iteration 6
39
(C ONT.) i=2,j=1 insert Add to 39 Iteration 6
40
(C ONT.) i=2,j=1 insert 40 Iteration 6
41
(C ONT.) i=2,j=1 insert 41 Iteration 6
42
(C ONT.) i=2,j=1 insert, add to O. 42 Iteration 6
43
(C ONT.) i=2,j=1 insert, add to O. 43 Iteration 6
44
(C ONT.) i=2,j=1 insert Add to 44 Iteration 6
45
(C ONT.) i=2,j=1 insert Add to 45 Iteration 6
46
(C ONT.) i=2,j=1 insert Add to 46 Iteration 6
47
(C ONT.) i=2,j=1 insert Add to 47 Iteration 6
48
(C ONT.) i=2,j=1 insert halt: true ( join SKY( )) Return O, =O 48 Iteration 6
49
E XPERIMENTAL E VALUATION 49
50
( CONT.) 50
51
C ONCLUSIONS SFSJ is better than other method like PROGXE SFSJ-SC is better than SFSJ-RR 51
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.