Presentation is loading. Please wait.

Presentation is loading. Please wait.

BINP experience in magnet production Sample. Example of MLS Dipole modeling Number of magnets8 Bending angle, deg45 Bending radius, mm1528 Gap, mm50 ±

Similar presentations


Presentation on theme: "BINP experience in magnet production Sample. Example of MLS Dipole modeling Number of magnets8 Bending angle, deg45 Bending radius, mm1528 Gap, mm50 ±"— Presentation transcript:

1 BINP experience in magnet production Sample

2 Example of MLS Dipole modeling Number of magnets8 Bending angle, deg45 Bending radius, mm1528 Gap, mm50 ± 0.02 Field range, Tup to 1.5 Good field area, mm 2 60 x 36 Homogeneity dB/B  2.5x10 -4

3 E e, MeV100600 B, Т0.211.31 ∆B/B± 2.5. 10 -4 (60 x 36 mm 2 ) I, А102.3623 I. w, A. t429726502 Example of MLS Dipole modeling 1200-50A (EBG, Germany) B=1.3 TB=0.21 T 1.44 T 1.31 T 0.21 T 200 mm х y 1 2 3

4 Accuracy of lamination profile d-30  m d+30  m h=100  m w=300  m + 15  m -15  m +15  m 1  В  7. 10 -5 2 1 3 3 2

5 Model«lam_model»«solid_model» Lenght 1108 mm К уп 0.971 zz xx L eff, mm 11801196 Chamfer 13 mm х 45  3D modeling of magnetic fields  B 0 =1.305 T ;  L eff /L eff =1.3. 10 -2  L eff /L eff =8. 10 -3 1.3 Т “lam” 1.3 Т “solid”

6 B=1.305 T B=0.213 T Model «lam»«solid» К 0.97 1 I, A 102.3623 B, T 0.2118791.3054581.304924 L eff, m 1.19701.18041.1957 h (1/m) 0.6561340.6653800.656832 k (1/m 2 ) -0.0188-0.0293-0.0271 m (1/m 3 ) -0.531-0.809-0.762 n (1/m 4 ) -7.15-9.95-16.48 3D modeling of magnetic fields

7 1 – central yoke 2 – glued end yoke 3 – box of steel plates 4 - geosigns 5 – coil supports MLS Dipole yoke design Stabolit 20 Stabolit 70 1200-50A

8 MLS Dipole yoke manufacture 5330 kg

9 Mechanical parameters of yoke ParameterTS   Length, mm 1108  0.5 1108.27 ± 0.43 Distance, mm 1082  0.1 1081.93 ± 0.11 gapTech Spec   h 1, mm48.611 ± 0.0248.600 ± 0.015 h 2, mm50.000 ± 0.0250.000 ± 0.015 h 3, mm48.611 ± 0.0248.610 ± 0.015 Yoke deflection, mm< 0.3 Non-parallelism A и B, mm< 0.5 Non-plateness С на 100 mm, mm< 0.03 Non-plateness D на 100 mm, mm< 0.03 Non-parallelism N and F, mm< 0.05

10 Coil production CoilsMainCorrection (1%) Iw, kA.t520.52 I, А6315 wire 21 x 12/  5 мм  1.5 мм R main 20 mOhm R cor 2.9 ohm PP 6 atm F16 l/min

11 Geo-sign alignment

12 MLS Dipole 8 3 ноги 370  0.2 мм

13 Hall probe measurement Current 100 mA Magnetic sensivity ~ 124  V/mT U lim < 30  V TC MC+ U lim -14.5  2.7 ppm/°С X H12 =130  0.002 mm ∆X=10  0.015 mm  Y=  0.04 mm Z=3  0.15 mm 1 – Hall probes 2 – temperature sensor 3 – NMR probe (10 -6 )

14 Hall probe measurement Magnetic field map – 2 runs

15 Magnetic measurement results of SD-1 current, Аh (1/м)k (1/м 2 )m (1/м 3 ) 103,650,65445-0,0194-0,696 2070,65445-0,0139-0,655 6220,65445-0,0218-0,739 7320,65445-0,0272-1,003 I=103-622 A ∆L eff /L eff =6.5. 10 -3 B=1.3 T B=0.21 T I=622.71A L eff =1192.0 mm

16 Magnetic measurement results «lam»«solid»  I, А 623 621.7 ± 0.5 B c, T 1.305 1.301 ± 0.002 L eff, mm 1180.41195.71192.2 ± 0.7 h, 1/m 0.6650.6570.654 k, 1/m 2 -0.0293-0.0271-0.024 ± 0.001 m, 1/m 3 -0.809-0.762-0.723 ± 0.019 n, 1/m 4 -9.95-16.48- 10.4 ± 1.4 ∆L eff /L eff =6. 10 -4 B=1.3 T SRD 01

17 Multipoles coils Quadrupole

18 Multipoles coils Sextupole Octupole

19 Coil production Radiation resistance quadrupole (SLAC impregnation procedure coils)

20 Pole profile and magnetic field (quadrupole) № idealshiftrotation shift + rotation step B’ n /B’ 2, Т 211111 300000 4005.4. 10 -4 5.5. 10 -4 4.6. 10 -4 500000 61.1. 10 -4 1.6. 10 -4 1.1. 10 -4 1.6. 10 -4 -1.2. 10 -4 700000 8002.4. 10 -6 2.5. 10 -6 -1.5. 10 -6 900000 10-1. 10 -5 -2. 10 -5 -1. 10 -5 -2. 10 -5 5.7. 10 -5 1100000 12006. 10 -7 5.6. 10 -7 -8. 10 -6 1300000 143.1. 10 -6 6.7. 10 -6 3. 10 -6 7. 10 -6 -2. 10 -5 18-2.6. 10 -6 -4. 10 -6 -2.6. 10 -6 -4. 10 -6 9. 10 -6  B/B 2 1. 10 -4 1.4. 10 -4 6.5. 10 -4 6.8. 10 -4 3.8. 10 -4 ¼ profile ½ length

21 Multipole modeling 1 – 1200-50А 2 – Сталь 10 ½ профиля ½ длины ¼ профиля 1200-50А ¼ профиля ½ длины sextupole octupole

22 TS  S1, mm 22.00  0.02 21.998  0.014 S2, mm 21.998  0.012 S3, mm 22.003  0.013 S4, mm 21.997  0.015 d1, mm 70.00  0.02 70.03  0.015 d2, mm 70.02  0.015 —  15  m —  25  m Design of MLS quadrupole TS  h, mm 400  0.03400  0.01 g, mm14-0.01 13.99  0.005 m, mm  0.030.01  0.01 L, mm 165.0  0.4165.08  0.18 L Ф, mm 154.40  0.08154.46  0.02

23 TS  S1, mm 22.00  0.03 21.975  0.002 S2, mm 21.987  0.008 S3, mm 21.990  0.001 S4, mm 21.978  0.007 S5, mm 21.976  0.002 S6, mm 22.006  0.010 d1, mm 76.00  0.03 75.975  0.02 d2, mm 75.973  0.013 d3, mm 75.986  0.015 Design of MLS sextupole TS  h, mm 400  0.03400  0.02 g, mm14-0.01 13.99  0.01 m, mm  0.050.015  0.01 L, mm 80.00  0.2579.967  0.2 L ch, mm 68.00  0.0668.05  0.01 —  15  m —  25  m —  50  m

24 TS  h, mm 400  0.03399.985  0.01 g, mm14-0.01 13.998  0.004 m, mm  0.050.009  0.003 L, mm 80.0  0.480.09  0.14 Octupole magnet —  25  m —  50  m TS  S1, mm 16.99  0.03 17.000  0.006 S2, mm 16.961  0.002 S3, mm 17.003  0.007 S4, mm 16.963  0.005 S5, mm 17.012  0.002 S6, mm 16.966  0.00 S7, mm 17.002  0.00 S8, mm 16.971  0.006 d1, mm 86  0.03 85.996  0.006 d2, mm 86.016  0.0 d3, mm 85.994  0.009 d4, mm 86.016  0.0

25 Accuracy of lamination and yoke profile № 2D id 2D rotation 3D idmeas B’ n /B’ 2 A’ n /B’ 2 B’ n /B’ 2 21 1 1-2.2. 10 -4 1 40 5.4. 10 -4 1.2. 10 -6 -3.7. 10 -5 -2.7. 10 -4 61.1. 10 -4 1.12. 10 -4 -2.9. 10 -4 -1.5. 10 -5 -1.1. 10 -4 ∆B/B2∆B/B2 1. 10 -4 6.5. 10 -4 3.6. 10 -4 8.7. 10 -4 +15  m -15  m Profile measurements «rotation» ~12  m 2D model «ideal» 10 -4 «rotation» 30  m 6.5. 10 -4 «rotation» 12  m 2.5. 10 -4 ∆B rot /∆B ideal ~ 2.5 3D model «ideal» 3.6. 10 -4 3D «rotation» 12  m ∆B/B 2 ~ 2.5*3.6. 10 -4 ~ ~ 9. 10 -4 2D model


Download ppt "BINP experience in magnet production Sample. Example of MLS Dipole modeling Number of magnets8 Bending angle, deg45 Bending radius, mm1528 Gap, mm50 ±"

Similar presentations


Ads by Google