Download presentation
Presentation is loading. Please wait.
Published byMagnus Cole Modified over 9 years ago
1
WFMOS: a tool for probing dark energy David Parkinson EDEN in Paris, December 2005
2
BAO as a standard ruler Acoustic Oscillations are imprinted into the matter power spectra. Fundamental wavelength fixed at recombination Can be used as a ‘standard ruler’ to probe geometry and dark energy
3
–Dark matter distributions via kinematics of LG galaxies –The structure of the LMC disk –Milky Way halo survey at MS –Population III and the dSph’s –Milky Way interstellar medium –Studies of high-velocity clouds –Kuiper Belt objects WFMOS is also a very broadly capable facility instrument: –Studies of large-scale structure –Formation and evolution of galaxies at high redshift –The growth of structure –AGN physics at high redshift –The relation between galaxies and the IGM at high redshift –Stellar pops in LG galaxies WFMOS Science WFMOS has two flagship science programs: –Acoustic oscillations What is the dark energy? –Galactic archeology How do galaxies form? (See KAOS Purple Book - http://www.noao.edu/kaos/)
4
‘Archival’ Science Additional science from survey data… –Constrain dark energy from cluster counts and Alcock-Paczsynki test –Spectroscopically identify thousands of SNe Ia –Test reciprocity relation d A /d L = (1+z) 2 to constrain GR and photon conservation (axion-photon interactions) –Accurately measure luminosity functions & star- formation rate densities with redshift & environment –Constrain shape of primordial power spectrum to 2% and thus mass of the neutrino to 0.1eV (2 )
5
‘Community’ Science Science from other WFMOS observations… –Detailed studies of local low-luminosity galaxies, down to Mr~-11 (r~24) in the Coma Cluster –High redshift (z>4) studies of galaxies and QSOs selected from multi-color photometry –Observations of M31 and M33 to provide kinematical and abundance information in the bulges and disks –Simultaneously observing QSOs and galaxies (in the same fields) to quantify the relation between the IGM and the large-scale structures as traced by galaxies.
6
WFMOS History WFMOS is a proposed second-generation Gemini instrument that emerged from the ‘Aspen’ process. Before that, it was the KAOS conceptual instrument (see http://www.noao.edu/kaos/). Originally intended for Gemini, the potential technical, financial, observational and strategic advantages of building WFMOS for Subaru, sharing Gemini & Subaru resources, has since been recognized. The WFMOS feasibility study has lead to a RfP for two competing concept studies, for review Oct/Nov 2006.
7
Target Specifications for WFMOS Top-level design performance guidelines for WFMOS… –Wavelength range: 0.39–1.0 µm –Field of view: ~1.5 deg diameter –Spatial sampling: ~1 arcsec fiber entrance –Spectral resolution: 1000–40,000 –One-shot coverage:~0.4 µm (at low resolution) –Simultaneous targets: 4000–5000
8
Advantages of WFMOS What differentiates WFMOS from other instruments? –Large field area: the FoV of WFMOS is 10x larger than that of any other 8m multi-object spectrograph. –Multiplex: multiplex gain of WFMOS is 5x that of any other 8m MOS (though fiber density is relatively low compared to multi-slit instruments). –Limiting magnitude: with nod & shuffle designed-in, WFMOS is not limited by sky-subtraction systematics when compared to multi-slit instruments. –WFMOS can deliver of order 20,000 spectra per night!
9
Instrument Comparison WFMOS
11
WFMOS FoV - Moon and Andromeda
12
DEIMOS VIRMOS FMOS GMOS Comparison of MOS fields of view FLAMES 15 deg ~ 300 Mpc/h at z 1 WFMOS Surveys of Large Scale Structure
13
WFMOS Efficiency Advantages Multiplex-limited case (density targets > density of fibers) FoV-limited case (density targets < density of fibers) WFMOS
14
WFMOS major science programs
15
Measuring the acoustic oscillations
16
Dark Energy Constraints
17
Optimisation The Unique Selling Point of BAO is that they act as standard rulers and can probe the dark energy. Our goal is to get the best possible constraints on the dark energy. How do we optimize the survey to do this? Constraining equation of state, w, and its evolution in time is seen as the primary goal.
18
IPSO Even selecting some parameterization of w (e.g. w(a)=w 0 +w a z/(1+z)) the errors on w of our survey still depends on the fiducial cosmology. Integrated Parameter Survey Optimization (Bassett 2004; Bassett, Parkinson and Nichol 2005) The Figure of Merit is the integral of the performance (I) over the cosmological parameters. D-optimality: performance (I) is measured as the determinant of the Fisher matrix of the dark energy parameters (w 0, w a ) [using Linder expansion w(a)=w 0 +(1-a)w a ].
19
Procedure
20
Optimization Procedure 1.Select survey configuration (area coverage, redshift bins, exposure time etc.) 2.Estimate number density of galaxies using LFs. 3.Estimate error on D A (z) and H(z) using scaling relations. 4.Calculate Fisher matrix of parameters, using distance data plus other info (Planck+SDSS). 5.Use Fisher matrix to calculate FoM. 6.Monte-carlo markov chain search over survey configuration parameter space, attempting to minimize determinant.
21
Survey Parameters Time: split between the high and low redshift regions. Total time = 1500 hours (expected observing time over three years). Area: different areas assigned to high and low redshift regions. Exposure time and number of pointings: generated from area and time. Redshift binning: Redshift regions broken down into a number of bins.
22
Scaling Relations It is computationally intensive to find full error covariances for power spectrum (requires FFTs). Computed errors on x and x’ for a grid of survey parameters and derived fitting formula. For photo-z surveys, assumed Gaussian photometric error r. See paper by Blake, DP, Bassett, Glazebrook, Kunz And Nichol
23
Fitting Formulae
24
Monte-carlo Markov Chain We conduct an MCMC search through the parameter space, accepting or rejecting surveys depending on the figure of merit. To find the optimum survey, have to search over large parameter space (>10 different parameters). Lots of degenerate minima! We “heat” and “cool” the chains, attempting to guarantee we reach the global minima.
25
Design Objectives Using these techniques we can optimize: –The observational area in the low and high redshift regimes –The number of redshift bins in each regime –The redshifts of the bins –The number of spectroscopic fibres –The gain in information from pushing into the redshift desert.
26
Line Emission
27
Continuum
28
Error ellipse
29
Summary WFMOS is a next generation Multi-Object Spectrograph currently in the design phase. It will be developed as part of a Subaru-Gemini partnership. It will dominate seeing-limited survey spectroscopy. It will enable flagship high-impact science programs, such as the dark energy. Using IPSO the survey will be optimised to extract information about the dark energy
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.