Download presentation
Presentation is loading. Please wait.
Published byKristin Wright Modified over 9 years ago
1
1 Status of The NICA Technical Design Report Nuclotron-based Ion Collider fAcility I.Meshkov for NICA Collaboration Round Table Workshop IV Searching for the Mixed Phase of Strongly Interacting Matter at the NICA Physics at NICA JINR, Dubna September 9 – 12, 2009
2
2 Contents Introduction: Mixed phase of strongly interacting matter and the NICA project Development of the NICA Concept and Technical Design Report 1. NICA scheme & layout 2. Heavy ions in NICA 2.1. Operation regime and parameters 2.2. Collider 3. Polarized particle beams in NICA 4. NICA project status and nearest plans 4.1. Injector 4.2. Booster 4.3. Nuclotron-NICA 4.4. Collider 4.5. NICA Collaboration Conclusion Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
3
3 Introduction: Mixed phase of strongly interacting matter and the NICA project Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 n/n_nuclear (n_nuclear = 0.16 fm -3 ) Nuclei GSI/JINR/BNL 2005 - 2009 critRHIC (2009) NICA (2006)
4
4 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Introduction: Development of the NICA Concept and TDR January 2008 NICA CDR MPD LoI Conceptual Design Report of Nuclotron-based Ion Collider fAcility (NICA) (Short version) January 2009 NICA CDR (Short version)
5
5 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Introduction: Development of the NICA Concept and TDR Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том I Дубна, 2009 Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том II Дубна, 2009 August 2009 NICA TDR (volumes I & II)
6
6 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Introduction: Development of the NICA Concept and TDR Approved by Director of JINR academician A.N.Sisakian ____________________ Nuclotron-based Ion Collider fAcility (NICA) "____ " 2009 г. Technical Design Report Project leaders: A.Sisakian,A.Sorin TDR is being developed by the NICA collaboration: JINR Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets, E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets, V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky, R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko, V.Zhabitsky Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov, T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev, INR RAS, Troitsk V.Matveev, A.Belov, A.Feshchenko, L.Kravchuk, L.Nechaeva, A.Turbabin, V.Zubets Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan Chief engineer of the Project V.Kalagin, Chief designer of the Project N.Topilin Editors: I.Meshkov, A.Sidorin
7
7 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Introduction: Development of the NICA Concept and TDR Since publication of the 1-st version of the NICA CDR The Concept was developed and the volumes I and II of the TDR have been completed: Volume I – Part 1, General description Part 2, Injector complex Volume II – Part 3, Booster-Synchrotron A brief review of the Project, its status and plans of realization are presented here.
8
8 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Introduction: Development of the NICA Concept and TDR The Project goals formulated in NICA CDR are the following: 1a) Heavy ion colliding beams 197 Au 79+ x 197 Au 79+ at s NN = 4 11 GeV (1 4.5 GeV/u ion kinetic energy ) at L average = 1 10 27 cm -2 s -1 (at s NN = 9 GeV); 1b) Light-Heavy ion colliding beams of the energy range and luminosity (“the reference” collider mode); 2) Polarized beams of protons and deuterons: p p s NN = 12 25 GeV (5 12.6 GeV kinetic energy ), d d s NN = 4 13.8 GeV (2 5.9 GeV/u ion kinetic energy ).
9
9 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 1. NICA scheme & layout 2.3 m 4.0 m Booster Synchrophasotron yoke Nuclotron Existing beam lines (solid target exp-s) Collider C = 251 m MPD Spin Physics Detector (SPD)
10
10 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 1. NICA scheme & layout (Contnd) “Old” Linac LU-20 KRION + “New” HILAC Booster Nuclotron Collider MPD SPD Beam dump
11
11 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Nuclotron (45 Tm) injection of one bunch of 1.1×10 9 ions, acceleration up to 1 4.5 GeV/u max. Collider (45 Tm) Storage of 17 (20) bunches 1 10 9 ions per ring at 1 4.5 GeV/u, electron and/or stochastic cooling Injector: 2×10 9 ions/pulse of 197 Au 32+ at energy of 6.2 MeV/u IP-1 IP-2 Two superconducting collider rings 2. Heavy ions in NICA 2.1. Operation regime and parameters Booster (25 T m) 1(2-3) single-turn injection, storage of 2 (4-6)×10 9, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u Stripping (80%) 197 Au 32+ 197 Au 79+ 2х17 (20) injection cycles Bunch compression (RF phase jump)
12
12 2. Heavy ions in NICA (Contnd) Bunch compression in Nuclotron Bunch rotation by RF amplitude “jump” 15 120 kV Phase space portraits of the bunch , 10 deg./div E – E 0 2 GeV/div 1 2 2.1. Operation regime and parameters A.Eliseev Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 E – E 0 2 GeV/div , 10 deg./div
13
13 2. Heavy ions in NICA (Contnd) Bunch compression in Nuclotron 2.1. Operation regime and parameters Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 time, 0.1 sec/div. E_r.m.c. 200 MeV/div. _r.m.s. 5 deg./div. (1 deg. 0.7 m) _r.m.s. 0.5 eV sec/div E – E 0, 2 GeV/div , 50 deg./div A.Eliseev Bunch rotation by RF phase “jump” = 180 0 Phase space portraits of the bunch E – E 0 2 GeV/div
14
14 Round Table workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 StageE MeV/u unnorm mm mrad p/pl bunch m Intensity loss,% Space charge Q Injection (after bunching on 4 th harmonics 6.2101.3E-36 10 0.022 After cooling (h=1)1002.453.8E-47.17 <10 0.016 At extraction6000.893.2E-43.1 0.0085 Injection (after stripping) 5940.893.4E-43.1 <20 0.051 After acceleration35000.251.5E-42 <1 0.0075 At extraction35000.251 10 -3 0.5 Loss = 40% N extr = 1E9 0.03 2. Heavy ions in NICA (Contnd) Bunch parameters dynamics in the injection chain 2.1. Operation regime and parameters
15
15 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) Time Table of The Storage Process 2.1. Operation regime and parameters B(t), arb. units Booster magnetic field B(t), arb. units Nuclotron magnetic field t, [s] B(t), arb. units electron cooling 1 (2-3) injection cycles, electron cooling (?) Extraction, stripping to 197 Au 79 + bunch compression, extraction injection 34 injection cycles to Collider rings of 1 10 9 ions 197 Au 79+ per cycle 1.7 10 10 ions/ring The next injection…, The next cycle…
16
16 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) MPD RF I.Meshkov, O.Kozlov, V.Mikhailov, A.Sidorin, A.Smirnov, N.Topilin SPD x,y kicker 10 m Injection channels Spin rotator 2.2. Collider Beam dump Long. kicker S_Cool PU x, y, long E_cooler Upper ring
17
17 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) General Parameters Ring circumference, [m]251.52 B max [ T m ]45.0 Ion kinetic energy (Au79+), [GeV/u]1.0 4.56 Dipole field (max), [ T ]4.0 Free space at IP (for detector)9 m Beam crossing angle at IP0 Vacuum, [ pTorr ]100 10
18
18 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Energy, GeV/u1.03.5 Ion number per bunch1E9 Number of bunches per ring17 Rms unnormalized beam emittance, ∙mm mrad3.80.25 Rms momentum spread1E-3 Rms bunch length, m0.3 Luminosity per one IP, cm -2 ∙s -1 0.75E261.1E27 Incoherent tune shift Q bet 0.0560.047 Beam-beam parameter 0.00260.0051 IBS growth time, s 65050 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) General Parameters
19
19 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) Two injection schemes are considered: 1) bunch by bunch injection, 17 bunches: bunch number is limited by kicker pulse duration bunch compression in Nuclotron is required (!) Electron and/or stochastic cooling is used for luminosity preservation 2.2. Collider (Contnd) ! 2) Injection and storage with barrier bucket technique and cooling of a coasting (!) beam, 20 bunches, bunch number is limited by interbunch space in IP straight section bunch compression in Nuclotron is NOT required (!) Electron and/or stochastic cooling for storage and luminosity preservation, bunch formation after storage are required. ! N bunch 17 N bunch 20
20
20 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Ion trajectory in the phase space ( p, ) 22 V(t) Cavity voltage ( p) ion Barrier Bucket Method ( p) ion Revolution period ( p) ion 0 Stack NICA: T revolution = 0.85 0.96 s, V BB 16 kV The method was tested experimentally at ESR (GSI) with electron cooling (2008). ( p) ion p ( p) separatrix Unstable phase area (injection area) In reality RF voltage pulses can be (and are actually) of nonrectangular shape Cooling is ON
21
21 1.6 1.4 1.2 1.0 0.8 0.5 1.5 2.5 3.5 4.5 E, GeV/u N_ion/bunch vs Energy [1E9] Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider luminosity vs Ion Energy Two outmost cases at Q Lasslett = Const : 1) L(E) = Const ; 2) N ion (E) = Const . 10 1.0 0.1 0.01 0.5 1.5 2.5 3.5 4.5 E, GeV/u L(E) [1E27 cm -2 ∙s -1 ] ! _ norm(E) [ ∙mm∙ mrad] 10 1.0 0.1 0.5 1.5 2.5 3.5 4.5 E, GeV/u
22
22 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 B [kG] 8 6 4 2 T e = 10 eV 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) BETACOOL simulation Parameters ion beam: 197 Au 79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, ( p/p) = 1∙10 -3 electron beam: I e = 0.5 A, r e = 2 mm, T e|| = 5 meV; = 0.024 (6 m/250 m) IBS Heating and cooling – luminosity evolution at electron cooling 6 Luminosity [1E27 cm -2 ∙s -1 ] 4 2 0 Conclusion: Electron magnetization is much more preferable !
23
23 For NICA parameters ( 197 Au 79+ ions) (N bunch ) necessary ~ 7 10 8 (N bunch ) sufficient ~ 6 10 9. Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Electron cloud effect in the Collider Electron cloud formation criteria The necessary condition (“resonance effect”): The sufficient condition (“multipactor effect”): Here c is ion velocity, Z – ion charge number, b – vacuum chamber radius, r e – electron classic radius, l space – distance between bunches, m e – electron mass, c – the speed of light, crit ~ 1 keV – electron energy sufficient for secondary electron generation. !
24
24 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider: the problems to be solved Collider SC dipoles with max B up to 4 T, Lattice and working point “flexibility”, RF parameters (related problem), Single bunch stability (“the head-tail effect”, resonances,… ), Vacuum chamber impedance and multibunch stability, Electron cloud effect and multibunch stability, Stochastic cooling of bunched ion beam, Electron cooling at electron energy up to 2.5 MeV, … … ….
25
25 3. Polarized particle beams in NICA Longitudinal polarization formation MPD Yu.Filatov, I.Meshkov B B Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Upper ring SPD Spin rotator: “Full Siberian snake” “Siberian snake” : Protons, 1 E 12 GeV (BL) solenoid 50 T∙m Deuterons, 1 E 5 GeV/u (BL) solenoid 140 T∙m
26
26 Longitudinal polarization formation Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Longitudinal polarization formation (Contnd) MPD SPD B Lower ring 3. Polarized particle beams in NICA (Contnd) “Full Siberian snake”
27
27 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 From Nuclotron S 3. Polarized particle beams in NICA (Contnd) Spin rotator B Polarized particle beams injection ~ 90 0 Protons, 1 E 12 GeV (BL) dipole 3 T∙m Deuterons, 1 E 5 GeV/u (BL) dipole 5.8 T∙m
28
28 Energy, GeV512 Proton number per bunch6E101.5E10 Rms relative momentum spread10E-3 Rms bunch length, m1.70.8 Rms (unnormalized) emittance, mm mrad0.240.027 Beta-function in the IP, m0.5 Lasslet tune shift0.00740.0033 Beam-beam parameter0.005 Number of bunches10 Luminosity, cm -2∙ s -1 1.1E30 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 3. Polarized particle beams in NICA (Contnd) Parameters of polarized proton beams in collider
29
29 Type of resonance Resonance condition Number of resonances at acceleration p 0 – 12 GeV d 0 – 6 GeV/u 1.Intrinsic res.Q s = kp Q z 60 2.Integer res.Q s = k251? 3.NonsuperperiodicQ s = m Q z, m kp442 4.Coupling res.Q s = m Q x 492 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 3. Polarized particle beams in NICA (Contnd) Polarized particle acceleration in Nuclotron: Spin resonances Q – betatron and spin precession tunes, k, m – integers, p – number of superiods (8 for Nuclotron) Power of the Spin resonances: P 1,2 ~ 10 3 ∙P 3,4
30
30 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 y s x y y s y s x y t Q s - Q res Spin tune dynamics Protons, 12 GeV, t = 100 s B x L x = 0.18 T∙m, B y ∙L y = 4.7 T∙m x - y -2 ∙ x y x Q S = x ∙ y /2 per 1 turn BxBx BsBs BsBs BxBx BxBx Fast spin rotator x y s 3. Polarized particle beams in NICA (Contnd) Polarized proton acceleration in Nuclotron: Fast crossing of spin resonances Yu.Filatov
31
31 4. NICA project status and plans Infrastructure Control systems PS systems Diagnostics Collider Transfer channel to Collider Nuclotron-NICA Nuclotron-M Booster + trans. channel LINAC + trans. channel KRION 2015201420132012201120102009 operationcomms/operatnmountg+commssiong Manufctrng + mounting designR & D Booster: magnetic system Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
32
32 HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), Status: design and construction (O.Belyaev & the Team, IHEP, Protvino). 4. NICA project status and plans (Contnd) 4.1. Injector KRION - Cryogenic ion source of “electron-string” type developed by E.Donets group at JINR. It is aimed to generation of heavy multicharged ions (e.g. 197 Au 32+ ). RFQ Electrodes 2H cavities of "Ural" RFQ (prototype) Sector H-cavity of “Ural” RFQ DTL (prototype) E.D.Donets E.E.Donets Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 KRION-6T Cryostat & vac. chamber To be commissioned in 2013.
33
33 4.2. Booster Superconducting Booster in the magnet yoke of The Synchrophasotron Synchrophasotron yoke B = 25 T m, B max = 1.8 T 1)3 single-turn injections 2) Storage and electron cooling of 8×10 9 197 Au 32+ 3) Acceleration up to 440 MeV/u 4) Extraction & stripping A.Butenko V.Mikhailov G.Khodjibagiyan N.Topilin Nuclotron Booster “Nuclotron-type” SC magnets for Booster 2.3 m 4.0 m Vladimir I. Veksler Dismounting is in progress presently Status: designing (working drawings) To be commissioned in 2013. 4. NICA project status and plans (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
34
34 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
35
35 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 2.3 m 4.0 m Heavy ion Linac Beam injection Slow extraction Fast extraction Transfer to Nuclotron RF system Electron cooling system Experimental area bld. 1 B
36
36 Injection & extraction Injection scheme Injection pulses FirstSecond Third Closed orbit displacement t Three pulses of single turn injection Extraction scheme 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
37
37 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Booster parameters Circumference214 m Max B 27 T·m Lattice typeFODO Superperiods4 Periods24 Strait sections2 x 8,6 m Dipol magnets40 x 2 m Maximum dipole field 1,8 T Quadrupole magnets 48 x 0.4 m Vacuum10 -11 Torr Booster superperiod
38
38 Ring equipment 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
39
39 RF system parameters Frequency range,MHz 0.6 2.4 Maximum voltage amplitude, kV 10 Number of cavities 2 Cavity length, m 1.4 RF tube type EIMAC 4XC15.000A 4. NICA project status and plans 4.2. Booster (Contnd) RF system (designed by Budker INP) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
40
40 Vacuum system equipment Varian TriScroll 300 pumps 42 Pfeiffer TMU 071 YP DN63 CF HV pumps 28 Pfeiffer TMU 521 YP DN160 CF HV pumps 14 Ion pumps 80l/s6 IKR 060, DN40 CF36 Pirani gauge6 HV valves CE44 DN63 & DN160 70 Vacuum, Torr1E-11 Vacuum system 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Booster superperiod
41
41 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 SC magnet technology SC hollow cable
42
42 4.2. Booster (Contnd) electron gun collector cryogenic shield superconducting solenoids “warm” solenoids E.Ahmanova, I.Meshkov, A.Smirnov, N.Topilin, Yu.Tumanova, S.Yakovenko Electron cooling system of the Booster 4. NICA project status and plans (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009
43
43 e-gun e-collector 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Electron cooling system of the Booster (Contnd)
44
44 4. NICA project status and plans 4.2. Booster (Contnd) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Main Power Supply system Main power supply unit: Maximum current 12 kA Voltage 250 V
45
45 To be commissioned in 2013. 4. NICA project status and plans 4.3. Nuclotron-NICA To be designed, constructed and commissioned: 1.Injection system (new HILAC) 2.RF system – new version with bunch compression 3.Dedicated diagnostics 4.Single turn extraction with fine synchronization 5.Polarized protons acceleration in Nuclotron G.Trubnikov & the Team I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 This project succeeds the Nuclotron-M project
46
46 4. NICA project status and plans 4.4. Collider “Twin magnets” for NICA collider rings “Twin” dipoles “Twin” quadrupoles 1 – Cos coils, 2 – “collars”, 3 – He header, 4 – iron yoke, 5 – thermoshield, 6 – outer jacket Double ring collider; (B ) max = 45 T m, B max = 4 T A.Kovalenko G.Khodjibagiyan I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 To be commissioned in 2014.
47
47 Under development in collaboration with - All-Russian Institute for Electrotechnique (Moscow) - FZ Juelich - Budker INP I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 4. NICA project status and plans 4.4. Collider Electron cooling system of the Collider Max electron energy, MeV 2.5 Max electron current, A 0.5 Solenoid magnetic field, T 0.3 “Magnetized” electron beam Solenoid type: “warm” at acceleration columns superconducting at transportation and cooling sections HV generator: Dynamitron type I.Meshkov A.Smirnov S.Yakovenko 6 m 3 m To be commissioned in 2014.
48
48 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 GSI/FAIR SC dipoles for Booster/SIS-100 SC dipoles for Collider 4. NICA project status and plans 4.5. NICA Collaboration Budker INP Booster RF system Booster electron cooling Collider RF system Collider SC magnets (expertise) HV electron cooler for collider Electronics (?) IHEP (Protvino) I njector Linac FZ Jűlich (IKP) HV Electron cooler Stoch. cooling Fermilab HV Electron cooler Stoch. cooling All-Russian Institute for Electrotechnique HV Electron cooler Corporation “Powder Metallurgy” (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission BNL (RHIC) Electron & Stoch. Cooling ITEP: Beam dynamics in the collider
49
49 Thank you for your attention! I.Meshkov, NICA Project Status ANKE/PAX Workshop Dubna, June 22-26, 2009
50
50 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 4. NICA project status and plans 4.6. “Collider 2T” V.Kalagin I.Meshkov V.Mikhailov G.Trubnikov MPD SPD 25 m G.Khodgibagiyan Collider: C_Ring 380 м Dipoles 2 Тл Luminosity? From Nuclotron “The ambush regiment”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.