Download presentation
Presentation is loading. Please wait.
Published byAlexander Bell Modified over 9 years ago
1
PAMELA an overview Takeichiro Yokoi JAI, Oxford University
2
Introduction PAMELA( Particle Accelerator for MEdicaL Applications ) aims to design particle therapy accelerator facility for proton and carbon using NS-FFAG with spot scanning Prototype of non-relativistic NS-FFAG (Many applications !! Ex. proton driver, ADS) It also aims to design a smaller machine for biological study as a prototype. Difficulty is resonance crossing acceleration in slow acceleration rate
3
Collaboration PAMELA (PM: K.Peach) Rutherford Appleton Lab Daresbury Lab. Cockcroft Ins. Manchester univ. Oxford univ. John Adams Ins. Imperial college London Brunel univ. Gray Cancer Ins. Birmingham univ. FNAL (US) LPNS (FR) TRIUMF (CA) In this session …. T.Yokoi … Overview A.Kacperek … Medical requirement H. Witte … Magnet option C. Beard … RF option S. Sheehy … Lattice
4
Clinical requirements (1) : Spot scanning Spot scanning can fully exert the advantage of particle therapy and pulsed beam of FFAG matches well to the treatment Typical voxel size : 4mm 4mm ~10mm 10mm Energy range : 70MeV~250MeV Typical @patient : ~1m Extraction scheme : Fast extraction Beam emittance : ~10 mm mrad (normalized)
5
Clinical requirements (2): IMPT Dose uniformity should be < ~2% To achieve the uniformity, precise intensity modulation is a must IMPT (Intensity Modulated Particle Therapy) Beam of FFAG is quantized. Good stability of injector and precise loss control are indispensable for medical applications New approach to medical accelerator control is required in PAMELA SOBP is formed by superposing Bragg peak time Integrated current Synchrotron & cyclotron Gate width controls dose time Integrated current FFAG Step size controls dose “Analog IM” “Digital IM”
6
Medical requirement (2): IMPT To investigate the requirement of injector, generation of SOBP in IMPT was studied using analytical model of Bragg peak The study of beam intensity quantization tells intensity modulation of 1/100 is required to achieve the dose uniformity of 2%. (minimum pulse intensity:~10 6 proton/1Gy) Monitor is a crucial R&D item of PAMELA If 1kHz operation is achieved, more than 100 voxel/sec can be scanned in PAMELA for the widest SOBP case. 1 kHz repetition is a present goal (For proton machine : 200kV/turn)
7
Injector Injector can preferably cope with proton and heavy ion injection (ICL group lead by J.Pozinsky investigating the scheme ) Two injectors are to be employed: cyclotron for proton, RFQ for HI Typical beam emittance from injectors : 1 mm mrad (normalized) Tracking study of RFQ line is undergoing. (transmission efficiency> 75% is achieved Stability of intensity is typically less than 5%
8
Lattice At present, two different types of lattice are proposed for NS- FFAG of non-relativistic particle (1)Linear lattice (by E.Keil et al.) Small excursion, large tune drift, short drift space, ordinary combined function magnet (2) Non-Linear Lattice (by C. Johnston et al.) * sextupole for chromaticity correction Large excursion, small tune drift, long drift space, wedged combined function magnet In lattice design study, we are now focusing on the understanding of dynamics of proton NS- FFAG : dynamics of slow resonance crossing acceleration, field quality, tolerance etc…
9
Test Lattice Wedge shaped combined function magnet (quadrupole) small number of cell (#cell:14), and long straight section(>1m) Long excursion(>60cm) variable energy extraction, rf cavity Relatively weaker field gradient, Max dipole field:1.5T (on orbit) As a test lattice, tune stabilized lattice proposed by C. Johnston was employed
10
Tune of test lattice Using ZOGUBI, lattice building was carried out. Horizontal tune can be well reproduced. However, to reproduce vertical tune, wedge angle was needed to be tweaked. The source of discrepancy must be identified. One possible source is the fringing field model The beam dynamics is basically subjected by the tune As long as tune is similar, the dynamics can be discussed in a similar way. Original design ZGOUBI result
11
Acceleration (perfect lattice) Horizontal beam blows up slightly ( amplitude wise:~3% for 400MeV acceleration It is possibly caused by the transverse kick by rf acceleration due to the tilted orientation of accelerating field to the beam axis. Potentially, arrangement of rf cavity could affect the intrinsic horizontal beam blow up, But this effect is not important 210keV/turn
12
Acceleration (Vertical) The beam acceleration was carried out for Vertically distributed beam with various positioning error and accelerating rate (horizontal beam size: 0) Beam blow-up is clearly observed at integer resonance V:260keV/turn ‘Microscopic’ study is required to understand the blow-up process
13
Integer resonance crossing (1) R. Baartman proposed a simple formula to evaluate the amplitude growth during resonance crossing Stronger focusing suppresses amplitude growth through smaller Design parameter Intrinsic parameter of lattice For integer resonance Q, (m=1, n=Q)
14
Integer resonance crossing (2) Tracking study was carried out around integer resonance(Q=4,3) 3 acceleration rate, 2 alignment error were examined 100 different lattice configurations For single integer resonance crossing, Baartman’s formula can estimate the growth rate 210 260 320 70 90 210 260 320 70 90 kV/turn (m)(m) (m)(m) Theoretical value
15
Half integer resonance crossing (=2Q) (n=2Q) Design parameter. By introducing focusing error to individual magnet, blow-up rate was estimated 100 different error settings were examined Baartman’s formula can some how evaluate the blow-up rate of half integer resonance Lattice parameter
16
Structure resonance Q=4 Q=3.5 Dynamic aperture Q=3 Q=2.5 Dynamic aperture 20 mm mrad Q=3.5 Q=2.5 N cel 14 4Q=14 (2Q=7) is structure resonance Even with only positioning error, resonance is excited at Q=3.5 **Field gradient error caused by the positioning error is<10 -3 210kV/turn
17
Requirement for lattice pos (m) eV(MeV/turn) Linear NS-FFAG(average B n ) Up to half integer resonance, Baartman’s formula can some how evaluate the blow- up rate. For slow acceleration case, (~200keV/turn) integer resonance crossing should be avoided. Single half integer resonance would be tolerable Structure resonance also should be circumvented. “Is there doable lattice option at the moment ??”
18
Lattice option S.Machida proposed semi- scaling FFAG for proton therapy (up to decapole) Tune drift ∆ <1 (No integer crossing, no structure resonance crossing) Orbit excursion ~30cm Long straight section (>2m) H.Witte (magnet), S.Sheehy (Lattice)
19
Acceleration Rate ∆B 1 1/01/0 :50kV/turn ∆B 1 1/01/0 :200kV/turn (1) Half integer resonance (2) 3rd integer resonance Nominal blow-up margin : 5 (1 mm mrad 5 mm mrad) With modest field gradient error (2 10 -3 ), acceleration rate of 50kV/turn suppresses the blow up rate less than factor 5. For the range, 3rd integer resonance will not arise serious beam blow-up Requirement of accelerating rate : >50kV/turn
20
Acceleration Scheme time Energy 1ms Option 1 time Energy 1ms Option 2 Option 1: P N rep 2 Option 2: P N rep Multi-bunch acceleration is preferable from the viewpoint of efficiency and upgradeability Repetition rate: 1kHz min. acceleration rate : 50kV/turn (=250Hz) How to bridge two requirements ?? Low Q cavity (ex MA) can mix wide range of frequencies
21
Multi-bunch acceleration 2-bunch acceleration using POP-FFAG (PAC 01 proceedings p.588) ∆f 4 f sy Multi-bunch acceleration has already been demonstrated Typical synchrotron tune <0.01 more than 20 bunches can be accelerated simultaneously “Hardware-wise, how many frequencies can be superposed ??”
22
Test of multi-bunch acceleration Extraction (5.5MHz) 50kV Injection (2.3MHz) 50kV PRISM RF PRISM rf can feed 200kV/cavity It covers similar frequency region B rf -wise, MA can superpose more than 20 bunches Now, experiment using prism cavity is under planning (possibly in this October)
23
Summary PAMELA intends to design particle therapy facility to deliver proton and carbon using FFAG. Intensive study is going on (dynamics, rf, magnet, clinical requirement etc.) Lattice requirements is now getting clear. For acceleration, multi-bunch acceleration provides efficient and upgradeable option. By the end of next year, hope an overall doable scenario is proposed.
24
Acceleration rf: 5kv/cell dx: 100µm(RMS) dx: 10µm(RMS) dx: 1µm(RMS)
25
Acceleration (Horizontal) V:260keV/turn The beam acceleration was carried out for horizontally distributed beam (Vertical beam size: 0) For horizontal motion, beam blow up is controllable. (Half integer resonance affect slightly for the case of positioning error.) The blow up should be checked with realistic distribution (finite beam size for both direction)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.