Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 TORSION-ROTATION-VIBRATION EFFECTS IN THE v 20, 2 v 21, 2 v 13 AND v 21 + v 13 STATES OF CH 3 CH 2 CN Adam M. Daly, John C. Pearson, Shanshan Yu, Brian.

Similar presentations


Presentation on theme: "1 TORSION-ROTATION-VIBRATION EFFECTS IN THE v 20, 2 v 21, 2 v 13 AND v 21 + v 13 STATES OF CH 3 CH 2 CN Adam M. Daly, John C. Pearson, Shanshan Yu, Brian."— Presentation transcript:

1 1 TORSION-ROTATION-VIBRATION EFFECTS IN THE v 20, 2 v 21, 2 v 13 AND v 21 + v 13 STATES OF CH 3 CH 2 CN Adam M. Daly, John C. Pearson, Shanshan Yu, Brian J. Drouin, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; Celina Bermúdez, José Luis Alonso, Grupo de Espectroscopia Molecular, Laboratorio de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Universidad de Valladolid, Valladolid, España 6/19/2014RA 04

2 2 Background 6/19/2014RA 04 Recent Spectroscopic work presented here WH13 (2009) SUBMILLIMETER SPECTROSCOPY OF THE OUT-OF-PLANE BENDING STATE v 20 OF C 2 H 5 CN.JOHN C. PEARSON, CAROLYN S. BRAUER, SHANSHAN YU AND BRIAN J. DROUIN, JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DR., PASADENA, CA 91109. TC 07 (2009) ANALYSIS OF THE LOWEST IN-PLANE BEND AND FIRST EXCITED TORSIONAL (v 13 and v 21 ) STATE OF CH 3 CH 2 CN. CAROLYN S. BRAUER, JOHN C. PEARSON, BRIAN J. DROUIN, SHANSHAN YU, JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DR., PASADENA, CA 91109. TC 06 (2009) THE SUBMILLIMETER SPECTRUM OF CH 3 CH 2 CN IN ITS GROUND VIBRATIONAL STATE. CAROLYN S. BRAUER, JOHN C. PEARSON, BRIAN J. DROUIN, SHANSHAN YU, JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DR., PASADENA, CA 91109.

3 3 Background 6/19/2014RA 04 Literature Daly, A. M., Bermúdez, C., & López, A, B. Tercero 2, J. C. Pearson 3, N. Marcelino 4, J. L. Alonso 1, and J. Cernicharo 2 2013, ApJ, 768, 81 Fukuyama Y, Omori K, Odashima H, Takagi K, Tsunekawa S: Analysis of rotational transitions in excited vibrational states of propionitrile (C2H5CN). Journal of Molecular Spectroscopy 1999, 193(1):72-103.. Mehringer DM, Pearson JC, Keene J, Phillips TG: Detection of vibrationally excited ethyl cyanide in the interstellar medium. Astrophysical Journal 2004, 608(1):306-313. Brauer CS, Pearson JC, Drouin BJ, Yu SS: NEW GROUND-STATE MEASUREMENTS OF ETHYL CYANIDE. Astrophysical Journal Supplement Series 2009, 184(1):133-137 Duncan, N.E., Janz, G.J. Molecular Structure and Vibrational Spectroscopy of Ethyl Cyanide, Journal of Chemical Physics 1955 23 434-440. Mader H, Heise HM, Dreizler H: MICROWAVE-SPECTRUM OF ETHYL CYANIDE - R0-STRUCTURE, NITROGEN QUADRUPOLE COUPLING-CONSTANTS AND ROTATION-TORSION-VIBRATION INTERACTION. Z Naturfors Sect A-J Phys Sci 1974, A 29(1):164-183. Laurie VW: MICROWAVE SPECTRUM AND INTERNAL ROTATION OF ETHYL CYANIDE. Journal of Chemical Physics 1959, 31(6):1500-1505 Lerner RG, Dailey BP: MICROWAVE SPECTRUM AND STRUCTURE OF PROPIONITRILE. Journal of Chemical Physics 1957, 26(3):678-680.

4 4 HOT CORE COMPONENT 1 (4’’, 5 Km s -1 respect to LSR, 5 Kms -1 line width ) HOT CORE COMPONENT 3 (25’’, 3 Km s -1 respect to LSR, 22 Kms -1 line width ) Parameters of the Orion-KL region that best simulate the emission line profile of CH 3 CH 2 CN using the “Excitation and transfer code” (J. Cernicharo, 2012) Temperature and column density derived from analysis of rotational transitions of CH 3 CH 2 CN define the physical and chemical conditions of the Orion-KL region. N (cm -2 )275 K130 K65 K N(CH 3 CH 2 CN g.s.) (cm −2 ) (3.0±0.9)x10 16 (8±2)x10 15 (3.0±0.9)x10 15 N(CH 3 CH 2 CN ν 13 =1/ ν 21 =1) N(CH 3 CH 2 CN ν 20 ) (cm −2 ) N(CH 3 CH 2 CN ν 12 ) (cm −2 ) (4 ±1)x10 15 (1.7 ±0.5)x10 15 (6 ±3)x10 14 (1.1±0.3)x10 15 (4±1)x10 14 (1.6±0.5)x10 14 (4±1)x10 14 (1.7±0.5)x10 14 (6±3)x10 13 N( 13 CH 3 CH 2 CN) (cm −2 ) N(CH 3 13 CH 2 CN) (cm −2 ) N(CH 3 CH 2 13 CN) (cm −2 ) (7 ±2)x10 14 (2±1)x10 14 (1.9±0.6)x10 14 (5±3)x10 13 (7±2)x10 13 (1.7±0.8)x10 13 Ethyl cyanide ORION-KL Nebula CH 3 CH 2 CN LABORATORY MEASUREMENTS – RADIO ASTRONOMICAL OBSERVATIONS LABORATORY MEASUREMENTS – RADIO ASTRONOMICAL OBSERVATIONS A-CH 2 DCH 2 CN, S-CH 2 DCH 2 CN, CH 3 CHDCN) “upper limit for the N (cm -2 ) (tentative detection)” HOT CORE COMPONENT 2 (10’’, 3 Km s -1 respect to LSR, 13 Kms -1 line width )

5 5 Frequency range 6/19/2014RA 04 SourceFrequency Range Valladolid Stark18-110 GHz Valladolid FM50-170 GHz, 270-360 Toyoma Line list26-200 GHz OSU Line FASST a 258-368 GHz JPL270-318, 395-605GHz JPL200-260, 680-800 GHz, 940- 1.5 THz a S. M. Fortman, I. R. Medvedev, C. F. Neese, and F. C. De Lucia. ApJ725, 1682 (2010).

6 6 Stark spectroscopy 6/19/2014RA 04 Daly, A. M., Bermúdez, C., & López, A, B. Tercero 2, J. C. Pearson 3, N. Marcelino 4, J. L. Alonso 1, and J. Cernicharo 2 2013, ApJ, 768, 81

7 7

8 8 Background 6/19/2014RA 04 AuthorsStatesFrequency Range Bauer, et alG.S.Up to 1.6 THz Fukuyama Mehringer D.M. et al v 13, v 21 Up to 40 GHz Up to 300 GHz Fukuyama Daly, et al v 20 Up to 40 GHz Up to 600 GHz Daly, et alv 12 Up to 600 GHz Fortman, et al.All states210-270 GHz

9 9 6/19/2014RA 04 Calc Energy cm -1 A”A’A”A’ 374 20 Coriolis(a,b)Fermi strongCoriolis(a,b) 406 2 13 Coriolis(a,b)Darling-Dennison(e-e) weak 421 21 +v 13 Coriolis(a,b) 425 2 21 Calc Energy cm -1 A’A”A’ 530 12 CoriolisFermi 575 20 +v 13 Coriolis 581 20 +v 21 The Hamiltonians

10 10 6/19/2014RA 04 StateVibrational E E Lower 570-640 Range J 67-75 Ave Energy – G.S. Energy Predicted Energy** Predicted anharmonic energyPercent anharmonic GS0725 ---- 13 200895169203 0.0 21 2009612362232163.1 20 36911153903753711.1 2 13 40011684434074060.2 2 21 40011834584464254.7 21 +v 13 4001152427426.94211.3 12 53012735485345300.7 20 +v 13 57412985735785750.5 20 + 21 * 57412134885985812.8 *two points removed ** MP2/aug-cc-pVTZ K=0&1 Data sets in the De Lucia Temperature Study

11 11 2v 13 K 0&1 v 20 K 0&1 2v 21 K 0&1 V 13 +V 21 K 1&2 2v 13 K 1&2 2v 21 K1&2 v 20 K 2&3 v 20 K 1&2 V 13 +V 21 K 0&1 2v 13 K 2&3 2v 21 K 2&3

12 12 K=0&1 and K=1&2 series 4 state fit 2v 21 K 0&1 v 20 K 2&3 v 20 K 1&2v 20 K 0&1 2v 13 K 0&1 2v 13 K 1&2 2v 21 K1&2 V 13 +V 20 K 0&1 V 13 +V 21 K 1&2

13 13 6/19/2014RA 04 2v 13 K 2&3 2v 21 K 2&3 V 13 +V 21 K 2&3? 2v 21 K1&2 2v 13 K 1&2 ? V 13 +V 21 K 1&2 V 13 +V 21 K 0&1

14 14 K=1&2 2V21 641540.5-705.527633075.3-818.539 Series 4 &5 K=1&2 2V21 641552.6-693.41633084.7-809.121 Series 4 &5 K=1&2 V13+V21 641938.9-307.07633606.7-287.101 Stack T 641949.5-296.557633619.8-274.043 642049.6 633652.1fat K=1&2 vt=175-74642149.4-96.618633806.3-87.519 642182.1 634007.4 K=1&2 GS75-74642246 633893.8 625538.7 K=1&2 Vbo75-74642989.9743.856634626.7732.894626260.9722.28 K=1&2 Vbi=175-74643121.7875.725634754.7860.873626384.5845.881 K=1&0 2V2176-75643517.7534.052635176.8520.879626833.9506.869 Already K=1&0 2V2176-75643518.9532.852635178.5519.243626836.1504.734 Assigned K=1&0 V2176-75643855.1196.594635506.4191.29627154.9185.937 K=1&2 2V13 643979.2 635592.5-105.233627204.8-135.975618815.5-165.388 series a from ppt643987.7these? series a from PPT 643992.1these? K=1&0 GS76-75644051.71805.692635697.71803.875627340.8 618980.9 V21+V13 K=1&0 644864.9813.23636510812.279628154.2813.364Series P&Q 644864.92618.922636511.92618.055628155.22616.508Series P&Q K=1&0 Vop76-75644874.7822.972636510812.323628141.9801.105 K=1&0 vbi=176-75644942890.319636576.1878.359628207.2866.426 K=1&0 2V13 645707.41655.738637323.11625.437628935.11594.278 Already K=1&0 2V13 645711.21659.51637327.51629.7516289401599.225 Assigned Color Scheme in Loomis-Wood Plot

15 15 6/19/2014RA 04 K=0&1 series 3 state fit v 20+ v 21 v 20+ v 13 v 12

16 16 Signal Strength 6/19/2014RA 04 v 12 58 5,54 →57 5,53 60 2,59 →59 2,58 A/E v 20 +v 13 60 1,59 →59 1,58 A/E G.S, 57 6,51 →56 6,50

17 17 6/19/2014RA 04 20 K a = 0, 1 and 2 K a = 0K a = 1 K a = 2 0 from g.s same transition Lower Upper v 20 analysis

18 18 6/19/2014RA 04 20 K a = 3, 4, 5 K a = 3 K a = 4 K a = 5 Lower Upper v 20 analysis

19 19 6/19/2014RA 04 20 K a = 3 perturbation 20 K a =3 with 2 13 and 2 21 K a =0 & 1 Kc=odd interaction (a,b) symmetry Perturbations in v 20

20 20 6/19/2014RA 04 20 K a = 4 perturbation Perturbations in v 20

21 21 6/19/2014RA 04 20 K a = 4 perturbation Perturbations in v 20

22 22 6/19/2014RA 04 20 K a = 6, 7, 8, 9 K a = 6 K a = 7 K a = 8 K a = 9 v 20 analysis

23 23 6/19/2014RA 04 38.40 cm -1 Energy levels of v20

24 24 6/19/2014RA 04 Calc Energy cm -1 A”A’A”A’ 374 20 Coriolis(a,b)Fermi strongCoriolis(a,b) 406 2 13 Coriolis(a,b)Darling-Dennison(e-e) weak 421 21 +v 13 Coriolis(a,b) 425 2 21 Calc Energy cm -1 A’A”A’ 530 12 CoriolisFermi 575 20 +v 13 Coriolis 581 20 +v 21 Conclusion - Under construction

25 25 Future Studies Continue work on excited vibrational states – v 20, 2v 13, 2v 21, v 21 +v 13 13 C isotopes from University of Lille – Assign G.S. up to 1.6 THz – Assign the v 21 /v 13, v 20, v 12 – 232, 223 and 322 – Freq: 75-113 Ghz J= 9-13 a-dipole K=0 – 155-325 GHz J= 17-38 a-dipole K=0 – 407-650 GHz J= 48-76 a-dipole K=0 – 780-987GHz but 940 GHz is highest recognized transition of ground state ( R-branch J=52, Ka=11)JPL – JPL – 355-410 GHz using chain of the 1.1 THz source and final tripler removed. – 680-810 GHz using new chain – 1p0, 1p1, 1p4 and 1p5 was measured by SYu 940-1610 GHz 6/19/2014RA 04

26 26 Acknowledgements John C. Pearson Shanshan Yu Brian J. Drouin Celina Bermúdez José Luis Alonso Caltech Postdoctoral Scholarship Program Herschel project at JPL 6/19/2014RA 04


Download ppt "1 TORSION-ROTATION-VIBRATION EFFECTS IN THE v 20, 2 v 21, 2 v 13 AND v 21 + v 13 STATES OF CH 3 CH 2 CN Adam M. Daly, John C. Pearson, Shanshan Yu, Brian."

Similar presentations


Ads by Google