Download presentation
1
Loai Alzghoul
2
Action Potential = ALL x NOTHING
3
The Action Potential Equilibrium potential of sodium (+60 mV) - 75 mV
Resting potential (-75 mV) Equilibrium potential of potassium (-95 mV) Equilibrium potential of sodium (+60 mV) K Na - 75 mV Passive increase in positive charge Electrotonic potential
4
The Action Potential Equilibrium potential of sodium (+60 mV) - 55 mV
Resting potential (-75 mV) Equilibrium potential of potassium (-95 mV) Equilibrium potential of sodium (+60 mV) - 55 mV Na Na K K K Opening of voltage-gated sodium channel threshold Electrotonic potential
5
The Action Potential Equilibrium potential of sodium (+60 mV) - 40 mV
Resting potential (-75 mV) Equilibrium potential of potassium (-95 mV) Equilibrium potential of sodium (+60 mV) Depolarisation due to sodium influx - 40 mV Na Na K K K Opening of voltage-gated sodium channel Electrotonic potential
6
voltage-gated sodium channels turn to the inactivation phase
The Action Potential voltage-gated sodium channels turn to the inactivation phase Resting potential (-75 mV) Equilibrium potential of potassium (-95 mV) Equilibrium potential of sodium (+60 mV) Depolarisation due to sodium influx + 50 mV Na Na K K K Inactivation of voltage-gated sodium channel Electrotonic potential
7
The Action Potential Equilibrium potential of sodium (+60 mV) + 50 mV
Resting potential (-75 mV) Equilibrium potential of potassium (-95 mV) Equilibrium potential of sodium (+60 mV) Depolarisation due to sodium influx opening of voltage-gated potassium channel K + 50 mV Na Electrotonic potential
8
The Action Potential Equilibrium potential of sodium (+60 mV) - 85 mV
Resting potential (-75 mV) Equilibrium potential of potassium (-95 mV) Equilibrium potential of sodium (+60 mV) Depolarisation due to sodium influx Repolarization due to potassium influx opening of voltage-gated potassium channel K - 85 mV Na Electrotonic potential
9
Resting potential (-75 mV) Equilibrium potential of sodium (+60 mV)
The Action Potential Membrane potential approaches the ENa and voltage-gated sodium channels turn to the inactivation phase Resting potential (-75 mV) Equilibrium potential of sodium (+60 mV) Depolarisation due to sodium influx K - 75 mV Na repolarization due to potassium influx closing of voltage-gated potassium channel Electrotonic potential Repolarisation due to potassium influx Hyperpolarising afterpotential
10
The Action Potential Inactivation of voltage-controlled sodium channel
Equilibrium potential of sodium (+60 mV) Opening of voltage-controlled sodium channel Opening of voltage-controlled potassium channel threshold Electrotonic potential Resting potential (-75 mV) Hyperpolarization due to more outflux of potassium ions Dentistry 07
11
Properties of action potentials
are all-or-none events threshold -70 +60 mV Stimulus APs do not summate - information is coded by frequency not amplitude.
12
Recording membrane potential
+ 60 - + 30 - 0 - - 30 - - 60 - - 90 - mV Electrotonic potential Localized non propagated Action potential Dentistry 07
13
Graded Potentials
14
Excitable cell: NEURON and MUSCLE CELL
15
Neuron F8-2 Axons carry information from the cell body to the axon terminals. Axon terminals communicate with their target cells at synapses.
17
Communication Between Neurons
Electrical synapse Chemical synapse one-way conduction, always transmits signals in one direction. this allows signals to be directed toward specific goals.
19
Recording of Resting and action potentials
It is recorded by cathode ray oscilloscope it is negative in polarized (resting, the membrane can be excited) state with the potential difference inside the cell membrane is negative relative to the outside. – -70 mV + + 0 mV Voltmeter + – Dentistry 07
20
Terminology Associated with Changes in Membrane Potential
F8-7, F8-8 Depolarization- a decrease in the potential difference between the inside and outside of the cell. Hyperpolarization- an increase in the potential difference between the inside and outside of the cell. Repolarization- returning to the RMP from either direction. Overshoot- when the inside of the cell becomes +ve due to the reversal of the membrane potential polarity.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.