Download presentation
Presentation is loading. Please wait.
Published byAvis Powers Modified over 9 years ago
1
Vertex09Jurriaan Schmitz - chip post- processing 1 GridPix – chip post processing Jurriaan Schmitz
2
Vertex09Jurriaan Schmitz - chip post-processing 2 About Jurriaan Schmitz Ph.D. experimental physics 1994 Universiteit van Amsterdam/NIKHEF Full professor at University of Twente 2002-present Senior Scientist at Philips Research 1994-2002
3
Vertex09Jurriaan Schmitz - chip post-processing 3 Outline The concept of wafer post-processing Successes of wafer post-processing Recent results Perspective for radiation imaging
4
Vertex09Jurriaan Schmitz - chip post-processing 4 The More than Moore domain of microtechnology “Moore’s Law” (but not exactly) Feature size Year of first mass production
5
Vertex09Jurriaan Schmitz - chip post-processing 5 The More than Moore domain of microtechnology Source: ENIAC Industry Industry & academia
6
Vertex09Jurriaan Schmitz - chip post-processing 6 More than Moore: new functions Traditional IC: Computing Data Storage Electrical Communication Possible extensions: High quality passives Wireless communication Optical communication Sensing and Actuating What’s 20*2.1? Forty-two
7
Vertex09Jurriaan Schmitz - chip post-processing 7 The fabrication challenge How to combine electronics with sensors, actuators, optical components, …? Hybrid (solder/bump the components together) 3-D integration by die stacking (e.g. 3D MAPS) Pre-CMOS: Make component, then make CMOS on the same wafer Intermediate: Mix the component and CMOS processes … or post-CMOS: add components on top of a finished CMOS chip Majority @ Vertex ’09
8
Vertex09Jurriaan Schmitz - chip post-processing 8 MEMS-first monolithic integration: Sandia 3-D accelerometer
9
Vertex09Jurriaan Schmitz - chip post-processing 9 Intermediate processing: mix the MEMS and CMOS fabrication NIST gas sensor Twente: Kovalgin, J. Electrochem. Soc. 153 (9) H181
10
Vertex09Jurriaan Schmitz - chip post-processing 10 Wafer post-processing a. Chip fabrication b. Wafer dicing
11
Vertex09Jurriaan Schmitz - chip post-processing 11 Wafer post-processing a. Chip fabrication b. Post-processing c. Wafer dicing
12
Vertex09Jurriaan Schmitz - chip post-processing 12 Logistics Chip fabrication: standard, at any regular (CMOS) fab Post-processing: special, in a custom CR laboratory Wafer dicing, packaging: specialized work like MEMS packaging, e.g. Amkor, Boschman a. Chip fabrication b. Post-processing c. Wafer dicing
13
Vertex09Jurriaan Schmitz - chip post-processing 13 Pros and cons We do not interfere with the (CMOS) fab process We can buy good quality chips We can use any lab for this Excellent alignment and contacts Cheap mass-manufacturing We must keep the CMOS intact We have to think the final stages through very carefully! (Standard solutions may fail) a. Chip fabrication b. Post-processing c. Wafer dicing
14
Vertex09Jurriaan Schmitz - chip post-processing 14 Outline The concept of wafer post-processing Successes of wafer post-processing Active pixel sensors LCoS Digital MicroMirrors Recent results Perspective for radiation imaging
15
Vertex09Jurriaan Schmitz - chip post-processing 15 Wafer post-processing example: CMOS image sensor (see “MAPS”)
16
Vertex09Jurriaan Schmitz - chip post-processing 16 Wafer post-processing example: Liquid-Crystal-on-Silicon Cover glass Electrode Liquid crystal Reflector CMOS
17
Vertex09Jurriaan Schmitz - chip post-processing 17 Wafer post-processing example: Digital MicroMirror™
18
Vertex09Jurriaan Schmitz - chip post-processing 18
19
Vertex09Jurriaan Schmitz - chip post-processing 19 Outline The concept of wafer post-processing Successes of wafer post-processing Recent results Micromechanical structures Photodetectors 3D electronics Perspective for radiation imaging
20
Vertex09Jurriaan Schmitz - chip post-processing 20 UC Berkeley: SiGe Resonator on top of CMOS
21
Vertex09Jurriaan Schmitz - chip post-processing 21 Example: silicon photodiodes on top of CMOS CEA-LETI, IEDM 2006
22
Vertex09Jurriaan Schmitz - chip post-processing 22 Rohm corp.: CIGS image sensor on CMOS IEDM 2008
23
Vertex09Jurriaan Schmitz - chip post-processing 23 CMOS on top of CMOS! (3D integration) B. Rajendran et al., IEEE Trans. El. Dev. 54 (4) 707 A. W. Topol et al., IBM J. Res. & Dev. 50 (4/5) 491 I. Brunets et al., IEEE Trans. El. Dev. 56 (8) 1637
24
Vertex09Jurriaan Schmitz - chip post-processing 24 CMOS post-processing: game rules Careful treatment of the underlying CMOS: Temperature ≤ 450 °C Mild (or no) plasmas Maintain the H balance in the MOSFET Limited mechanical stress The CMOS properties must remain unchanged: only then the standard infrastructure can be used. Further reading: Jurriaan Schmitz, Nucl. Instr. Meth. A 576 (2007) 142.
25
Vertex09Jurriaan Schmitz - chip post-processing 25 Outline The concept of wafer post-processing Successes of wafer post-processing Recent results Perspective for radiation imaging MPGD: InGrid/GridPix Future
26
Vertex09Jurriaan Schmitz - chip post-processing 26 Bottleneck issues in radiation imaging Power mgt. (cooling) Yield of interconnects (E/O) System mass (rad. lengths) What’s the answer?
27
Vertex09Jurriaan Schmitz - chip post-processing 27 Bottleneck issues in electronics Power mgt. (cooling) Yield of interconnects System mass Solution in electronics: Integration and miniaturization
28
Vertex09Jurriaan Schmitz - chip post-processing 28 Radiation imaging – gaseous detectors Cathode planes Particle Anode wires Traditional MWPC InGrid
29
Vertex09Jurriaan Schmitz - chip post-processing 29 InGrid: Integrated Grid Use an ASIC as read-out electronics Perfect alignment holes to pixels No dead areas Geometrical freedom No manual manufacturing Pixel pad Supporting pillar Grid Cathode CMOS chip
30
Vertex09Jurriaan Schmitz - chip post-processing 30 The microsystem Al membrane (-400-450 V) SU-8 pillar (50 μm high) a-Si protection Medipix2 chip (or Timepix)
31
Vertex09Jurriaan Schmitz - chip post-processing 31 Process flow – suspended membrane Deposit spark protection film: a-Si or Silicon-rich nitride SU-8 photoresist for pillars Al deposition is critical: unexposed SU-8 (yellow) should not crosslink Al patterning also critical: lithography at room temperature to protect SU-8 Membrane release at end, after wafer dicing (fragility) 50 µm SU-8 coating and exposure 0.8 µm Al deposition + patterning SU-8 development Spark protection
32
Vertex09Jurriaan Schmitz - chip post-processing 32 The InGrid detector 2-D and 3-D mip-tracking shown Good energy resolution (11.7% FWHM for 55 Fe in Ar/CH 4 ) Micromegas built on a chip, as well as GEM Multiple electrodes shown Beam tests for mip-tracking and transition radiation
33
Vertex09Jurriaan Schmitz - chip post-processing 33 The next step: other radiation imagers Semiconductors on a chip Amorphous silicon: shown (e.g. Wyrsch et al.) Polycrystalline silicon: first steps made CIGS: rad-hard!! Integrate components for optical communication? Scintillator on an APS? MCP on a chip? SigmaDigitalXray Vallerga et al. Melai et al.
34
Vertex09Jurriaan Schmitz - chip post-processing 34 Conclusions What can we build on top of CMOS? Light projectors CMOS imagers More electronics Radiation imaging detectors … There’s plenty of room at the top!
35
Vertex09Jurriaan Schmitz - chip post-processing 35 Thanks… My low-temperature coworkers: Tom Aarnink, Victor Blanco Carballo, Arjen Boogaard, Ihor Brunets, Jisk Holleman, Alexey Kovalgin, Jiwu Lu, Joost Melai, Cora Salm, Sander Smits, Rob Wolters, Yevgen Bilevych, Marten Bosma, Max Chefdeville, Harry van der Graaf, Martin Fransen, Jan Visschers, Jan Timmermans Our sponsors: The Dutch Technology Foundation, FOM NXP Research, Adixen/Alcatel, ASM International …and the Medipix consortium
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.