Presentation is loading. Please wait.

Presentation is loading. Please wait.

Recitation: Rehearsing Wireless Packet Reception in Software

Similar presentations


Presentation on theme: "Recitation: Rehearsing Wireless Packet Reception in Software"β€” Presentation transcript:

1 Recitation: Rehearsing Wireless Packet Reception in Software
Zhenjiang Li, Yaxiong Xie, Mo Li, Nanyang Technological University Kyle Jamieson University College London

2 Wireless transmissions is going wider-band
Up to 160 MHz Up to 40 MHz ac (2013) n (2009) Up to 22 MHz a/b/g (1999)

3 Selective fading in wideband channels
SNR 30+ dB! Subcarriers

4 Selective fading in wideband channels
Heterogeneous BERs

5 Can we predict the bit destiny before transmitting the packet?
Optimal bit rate selection Efficient partial packet recovery Unequal packet protection

6 Can we predict the bit destiny before transmitting the packet?
Narrow band SNR-BER theory cannot apply Approximation with effective SNR inaccurate Work with commodity WiFi NICs

7 Rehearsing before transmissions
(Output) Packet error rate (PER) Error-prone bit positions Rehearse transmissions CSI (Input)

8 Complex but predictable
To this end, we need? Complex but predictable

9 Channel CSI (as input)

10 Interleaving Channel CSI (as input) Interleaving Deterministic

11 Interleaving interleaver Block interleaver write in row read in column
𝐗 𝟏 𝐗 𝟐 𝐗 πŸ‘ 𝐗 𝟏 𝐗 πŸ’ 𝐗 πŸ• 𝐗 𝟏𝟎 𝐗 𝟐 𝐗 πŸ“ 𝐗 πŸ– 𝐗 𝟏𝟏 𝐗 πŸ‘ 𝐗 πŸ” 𝐗 πŸ— 𝐗 𝟏𝟐 𝐗 𝟏 𝐗 𝟐 𝐗 πŸ‘ 𝐗 πŸ’ 𝐗 πŸ“ … 𝐗 𝟏𝟐 𝐗 πŸ’ 𝐗 πŸ“ 𝐗 πŸ” write in row 𝐗 πŸ• 𝐗 πŸ– 𝐗 πŸ— Generally, there are two kinds of interleaver widely used in communication systems: block interleaver and convolutional interleaver. system adopts block interleaver. 𝐗 𝟏𝟎 𝐗 𝟏𝟏 𝐗 𝟏𝟐 read in column

12 Interleaving interleaver Block interleaver write in row read in column
𝒋= 𝑩 πŸπŸ‘ Γ— π’Š π’Žπ’π’… πŸπŸ‘ + π’Š/πŸπŸ‘ interleaver 𝐗 𝟏 𝐗 𝟐 𝐗 πŸ‘ 𝐗 πŸ’ 𝐗 πŸ“ … 𝐗 𝟏𝟐 write in row Generally, there are two kinds of interleaver widely used in communication systems: block interleaver and convolutional interleaver. system adopts block interleaver. read in column 𝐗 𝟏 𝐗 πŸ’ 𝐗 πŸ• 𝐗 𝟏𝟎 𝐗 𝟐 … 𝐗 𝟏𝟐

13 So far Coded Bits Packet Bits

14 Coding CSI (as input) Deterministic Predictable Channel Interleaving

15 Convolutional coding + + Simple encoder Output Input Coding rate of Β½
3 registers (4 finite states) Convolutional Coding + Output Input +

16 Convolutional coding Decoding Failure
Path with the minimal Hamming distance Failure Faulty path is chosen Error event

17 Convolutional coding Error event probability (EVP) EVPi
Probability that a faulty path will be selected EVPi Any faulty path that diverges at state i

18 Convolutional coding EVPi varies
EVPi varies Indicate the error-prone bit positions

19 Convolutional coding

20 Convolutional coding

21 Convolutional coding lim π’Œβ†’βˆž π’Œ ∞ 𝒏 π’Œ βˆ— 𝑷 π’Œ Viterbi theory
Andrew James Viterbi lim π’Œβ†’βˆž π’Œ ∞ 𝒏 π’Œ βˆ— 𝑷 π’Œ Viterbi theory 𝑷 π’Œ is the probability that one path with Hamming distance π‘˜ will be chosen as the decoding result 𝑷 π’Œ = π’Ž=(π’Œ+𝟏)/𝟐 π’Œ π’Œ 𝒆 𝒑 𝒆 π’Ž (πŸβˆ’ 𝒑 𝒆 ) π’Œβˆ’π’Ž , π’Œ π’Šπ’” 𝒐𝒅𝒅 𝟏 𝟐 π’Œ π’Œ/𝟐 𝒑 𝒆 π’Œ/𝟐 (πŸβˆ’ 𝒑 𝒆 ) π’Œ/𝟐 + π’Ž= π’Œ 𝟐 +𝟏 π’Œ π’Œ 𝒆 𝒑 𝒆 π’Ž (πŸβˆ’ 𝒑 𝒆 ) π’Œβˆ’π’Ž ,π’Œ π’Šπ’” 𝒆𝒗𝒆𝒏 𝒏 π’Œ = 2k is the number of paths with Hamming distance π‘˜

22 Convolutional coding lim π’Œβ†’βˆž π’Œ ∞ 𝒏 π’Œ βˆ— 𝑷 π’Œ
Andrew James Viterbi lim π’Œβ†’βˆž π’Œ ∞ 𝒏 π’Œ βˆ— 𝑷 π’Œ Viterbi theory Assumption Each coded bit has the same error probability 𝑝 𝑒 Coded Bits

23 However … + + Output 1 Input Output 2 Coded Bits 𝑿 𝒏 𝑿 π’βˆ’πŸ 𝑿 π’βˆ’πŸ 𝑿 π’βˆ’πŸ‘
𝑿 π’βˆ’πŸ’ 𝑿 π’βˆ’πŸ“ 𝑿 π’βˆ’πŸ” Input Output 2 +

24 EVP calculation in 802.11 Diverging segments of faulty paths
Cannot be directly measured Use error burst length to approximate All possible error combinations

25 EVP calculation in 802.11 (1) Short divergent segments
(2) Small number of error bits

26 Reducing computations
Sort π›Œ π’Šβˆˆπ‘­ 𝒑 π’Š Γ— π’Šβˆ‰π‘­ (πŸβˆ’ 𝒑 π’Š ) Γ— π’˜ 𝒆,𝒍 𝑬𝑽𝑷+=

27 LDPC (Low Density Parity Check)
Block code Packet bits Coded bits

28 LDPC (Low Density Parity Check)
Block code Packet bits Coded bits Decoding Error 𝑬𝑽𝑷 π’Š = 𝒍=𝑬π‘ͺπ‘ͺ 𝒏 π’Š π“•βˆˆ 𝑭 𝒍 π’‹βˆˆπ“• 𝒑 𝒋 βˆ™ π’‹βˆˆπ“• (πŸβˆ’ 𝒑 𝒋 )

29 Finally CSI (as input)

30 Experiment evaluation
TP-Link TL-WDR7500 Wi-Fi router Atheros 9580 NIC (802.11n) SoC QCA9558 Data collected 50 locations (U-shape route) 93,000+ UDP packets with 1000 byte random payloads Iterating all 8 data rates (6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps) CSIs and transmitted packets (correct and corrupted)

31 Benchmark tests Packet Error Rate (PER) prediction Convolutional Code
LDPC Code

32 Benchmark tests Computational overhead Average delay < 0.2 ms

33 Application -- #1 Rate selection
Throughput improvement Average: 25.6% Rect-Rate: PER by Recitation < 0.1 ESNR: ESNR rate selection approach OPT: Oracle selection based on actual transmissions

34 Application -- #2 Unequal protection
Error-prone positions Periodical pattern (in OFDM symbols) EVP accurately describes the BER

35 Application -- #2 Unequal protection
Video streaming Rect-Video I-frames at more reliable positions P-, B- frames at other positions Stan-Video Average 6dB improvement on PSNR (peak SNR), a standard metric to measure video quality

36 More evaluations System parameters Partial packet recovery
MIMO settings Mobility

37 Takeaways 1. Frequency selective fading in wideband channels
2. Narrow band experience unsuitable 3. Complicated but predictable PHY operations


Download ppt "Recitation: Rehearsing Wireless Packet Reception in Software"

Similar presentations


Ads by Google