Download presentation
Presentation is loading. Please wait.
1
~ 0 [u(x,y)/Ue] (1 – u(x,y)/Ue)dy
MOMENTUM INTEGRAL EQUATION ASSUMPTIONS: steady, incompressible, two-dimensional no body forces, p = p(x) in boundary layer, d<<, d<< * ~ 0 (1 – u/U)dy ~ 0 [u(x,y)/Ue] (1 – u(x,y)/Ue)dy
3
For flat plate with dP/dx = 0, dU/dx = 0
(plate is 2% thick, Rex=L = 10,000; air bubbles in water) Plate is 2% thick ReL = (air bubbles in water) For flat plate with dP/dx = 0, dU/dx = 0
4
Realize (like Blasius) that u/U similar for all x when plotted
as a function of y/ . Substitutions: = y/; so dy/ = d Not f(x) = y/ =0 when y=0 =1 when y= u/U = y/
5
= f()
6
= for Blasius exact solution, laminar, dp/dx = 0 u/U = f() Strategy: obtain an expression for w as a function of , and solve for (x)
7
Laminar Flow Over a Flat Plate, dp/dx = 0
Want to know w(x) Assume velocity profile: u = a + by + cy2 B.C. at y = 0 u = so a = 0 at y = u = U so U = b + c2 at y = u/y = 0 so 0 = b + 2c and b = -2c U = -2c2 + c2 = -c2 so c = -U/2 u = -2cy – (U/2) y2 = 2Uy/2 – (U/2) y2 u/U = 2(y/) – (y/)2 Let y/ = u/U = 2 -2 Strategy: obtain an expression for w as a function of , and solve for (x)
8
u/U = 2 -2 Laminar Flow Over a Flat Plate, dp/dx = 0
Strategy: obtain an expression for w as a function of , and solve for (x)
9
w = 2U/ u/U = 2 -2 2 - 42 + 23 - 2 +23 - 4
Strategy: obtain an expression for w as a function of , and solve for (x)
10
Assuming = 0 at x = 0, then c = 0
2U/(U2) = (d/dx) (2 – (5/3)3 + 4 – (1/5)5)|01 2U/(U2) = (d/dx) (1 – 5/3 + 1 – 1/5) = (d/dx) (2/15) Assuming = 0 at x = 0, then c = 0 2/2 = 15x/(U) Strategy: obtain an expression for w as a function of , and solve for (x)
11
2/2 = 15x/(U) 2/x2 = 30/(Ux) = 30 Rex /x = 5.5 (Rex)-1/2
Strategy: obtain an expression for w as a function of , and solve for (x)
13
Three unknowns, A, B, and C- will need
three boundary conditions. What are they?
14
y
16
u/U = sin[(/2)()]
18
(*/ = 0.344)
19
0.344
20
LAMINAR VELOCITY PROFILES: dp/dx = 0
21
y / u / U Sinusoidal, parabolic, cubic look similar to Blasius solution.
23
FLAT PLATE; dp/dx = 0; TURBULENT FLOW: u/U = (y/)1/7
{for pipe had u/U = (y/R)1/7 = 1/7} But du/dy = infinity, so use w from pipe for a u/U = (y/R)1/7 profile: w = U2[/(RU)]1/4 Replace Umax with Ue = U and R with to get for flat plate: w = U2[/( U)]1/4
24
u/Umax = (y/)1/7 u/Ue = 2(y/) – (y/)2
25
Cf = skin friction coefficient = w/( ½ U2) Cf = 0.0466 [/( U)]1/4
FLAT PLATE; dp/dx = 0; TURBULENT FLOW: u/U = (y/)1/7 w = U2[/( U)]1/4 Cf = skin friction coefficient = w/( ½ U2) Cf = [/( U)]1/4 CD = Drag coefficient = FD/(½U2A) = wdA/(½U2A) = (1/A)CfdA
26
FLAT PLATE; dp/dx=0; TURBULENT FLOW: u/U = (y/)1/7
w = U2 (d/dx) 011/7(1- 1/7)d = U2 (d/dx) (1/(8/7) – 1/(9/7)) = U2 (d/dx) (63-56)/72 = U2 (d/dx) (7/72)
27
FLAT PLATE; dp/dx=0; TURBULENT FLOW:
u/U = (y/)1/7 0.0233U2[/( U)]1/4 = U2 (d/dx) (7/72) 1/4d = (/U)1/4dx (4/5) 5/4 = (/U)1/4 x + c Assume turbulent boundary layer begins at x=0 Then = 0 at x = 0, so c = 0 = (/U)1/5 x4/5 (x/x)1/5 /x = (/[Ux])1/5 = 0.382/Rex1/5
28
Cf = skin friction coefficient = w/( ½ U2)
FLAT PLATE; dp/dx=0; TURBULENT FLOW: u/U = (y/)1/7 /x = (/[Ux])1/5 = 0.382/Rex1/5 Cf = skin friction coefficient = w/( ½ U2) Cf = [/( U)]1/4 Cf = /Rex1/5
30
Favorable Pressure Gradient p/x < 0; U increasing with x
Unfavorable Pressure Gradient p/x > 0; U decreasing with x When velocity just above surface = 0, then flow will separate; causes wake. Gravity “working”against friction Gravity “working” with friction
31
Unfavorable Pressure Gradient p/x > 0; U decreasing with x
Favorable Pressure Gradient p/x < 0; U increasing with x Unfavorable Pressure Gradient p/x > 0; U decreasing with x When velocity just above surface = 0, then flow will separate; causes wake. Gravity “working”against friction Gravity “working” with friction
32
Favorable Pressure Gradient (dp/dx<0), flow will never separate.
Unfavorable Pressure Gradient (dp/dx>0), flow may separate. No Pressure Gradient (dp/dx = 0), flow will never separate. Logic ~ for flow to separate the velocity just above the wall must be equal to zero uy+dy = uo + u/yy=0 = u/yy=0 = 0 for flow separation w = u/yy=0 Laminar Flow: w(x)/(U2) = constant/Re1/2; flat plate; dp/dx=0 Turbulent Flow: w(x)/(U2) = constant/Re1/5; flat plate; dp/dx=0 For both laminar and turbulent w is always positive so u/yy=0 is always greater than 0, so uy+dy is always greater than zero
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.