Presentation is loading. Please wait.

Presentation is loading. Please wait.

Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘

Similar presentations


Presentation on theme: "Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘"— Presentation transcript:

1 Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science

2 Where we are... What is a topos? The topos of presheaves Functorial local compositions Concept modeling over topoi Contents

3 Where we are... C Í Ÿ12 (chords) M Í — 2 (motives) Ambient space
Ÿ12 = finite -> enumeration, Pólya & de Bruijn —2 = infinite -> ??

4 Where we are... B K Í B set module B @ 0Ÿ@B K Í 0Ÿ@B A
A = Ÿn: sequences (b0,b1,…,bn) A = B: self-addressed tones Need general addresses A

5 Where we are... B M Í A@B M Í B A@B = eB.Lin(A,B) A = R
= eB.Lin(R,B) ª B2

6 Where we are... Ÿ12 S A@B = eB.Lin(A,B) R = Ÿ, A = Ÿ11, B= Ÿ12
Series: S Î Ÿ12 = e Ÿ12.Lin(Ÿ11, Ÿ12) ª Ÿ12 12

7 I II III IV V VI VII Where we are...

8 Where we are... The class nerve cn(K) of global composition
is not classifying I IV II VI V III VII 10 15 5 6 2 Where we are...

9 Where we are... Motivic strip of Zig-Zag (15) 5 6 4 (16) (19) (19) 7 3
8 2 5 3 (15) Where we are... (16) (19) (19) (2) (11) (20) (10) (15)

10 B = „EH“ ª —2 M Í E H Where we are... E

11 Where we are... Have universal construction of a „resolution of KI“
res: ADn* ® KI It is determined only by the KI address A and the nerve n* of the covering atlas I. Where we are... ADn* KI res

12 Where we are... 0Dn* res KI 6 5 2 3 4 1 a d b c 1 2 3 4 6 5 5 6 3 4 1

13 „Classified“ Where we are...
The category ObLocomA of local objective A-addressed compositions has as objects the couples (K, of sets K of affine morphisms in and as morphisms f: (K, ® (L, set maps f: K ® L which are naturally induced by affine morphism F in The category ObGlocomA of global objective A-addressed compositions has as objects KI coverings of sets K by atlases I of local objective A-addressed compositions with manifold gluing conditions and manifold morphisms ff: KI ® LJ, including and compatible with atlas morphisms f: I ® J Where we are... „Classified“

14 What is a Topos? Sets cartesian products X x Y Mod@
F: Mod —> Sets presheaves have all these properties Sets cartesian products X x Y disjoint sums X È Y powersets XY characteristic maps c: X —> 2 no „algebra“ What is a Topos? Mod direct products A≈B has „algebra“ no powersets no characteristic maps

15 What is a Topos? A category E is a topos iff it
has terminal object 1 and products A ¥ B has initial object 0 and coproducts A + B has exponentials XY has a subobject classifier 1 ® W What is a Topos? Our examples: 1) E = Sets sets 2) E = presheaves over the category Mod of modules

16 What is a Topos? A ¥ B = cartesian product 1 = {Æ} is terminal:
Example: E = Sets A ¥ B = cartesian product B A ¥ B What is a Topos? (a,b) b a A 1 = {Æ} is terminal: There is a unique !:X ® 1: x ~> Æ

17 What is a Topos? A + B = disjoint union, 0 = Æ A B 0 = Æ is initial:
Example: E = Sets A + B = disjoint union, 0 = Æ A + B What is a Topos? A B 0 = Æ is initial: There is a unique !:0 ® X: ? ~> ?

18 What is a Topos? XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X)
Example: E = Sets XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X) g: Z ® XY ~> g*: Z ¥ Y ® X g*(z,y)=g(z)(y) What is a Topos?

19 What is a Topos? Example: E = Sets subobject classifier 1 ® W
= 2 = {0,1} 1 ® 2: 0 ~> 0 X Y ! c What is a Topos? c(x) = 0 iff x Î X 1 2 Y X Subobjects(Y) ª Hom(Y,W) {0,1}

20 What is a Topos? Counterexample: E = ModR with R-linear maps
There is no subobject classifier here! 0-module X Y c ! What is a Topos? X = Ker(c) Y/X ≈ Im(c)   absurd!

21 More generally, take the category Mod of modules over any rings, together with (di)affine morphism This is not only not a topos, it has other not very agreable properties: Have no module M+N for the property k  or k  iff k  Have no module P(M) for the property K  iff K  What is a Topos?

22 Presheaves @M = presheaf of M
Problem: When replacing M by the set we loose all information about M. Solution: Replace a module M by the system of sets @M: Mod  Sets: A ~> „set of all perspectives of M, as viewed from A“ Presheaves B u A M = u.v:C  B  A = g g.u @M = presheaf of M

23 Presheaves Mod@ = category of presheaves on Mod Presheaves:
F: Mod  Sets: A ~> F(A) Together with the transition maps :  for u:B  A with the properties Presheaves = u.v: C  B  A = = category of presheaves on Mod

24 Presheaves Example 1 S = set, @S: Mod  Sets: A ~> A@S = S
Transition maps, u: B  A, = 1S : S  S Presheaves „small topos within a large topos“ Sets @Sets

25 Presheaves Example 2 M = module,
Mod  Sets: A ~> = Transition maps, u: B  A, :  K  ~>  Presheaves K

26 Presheaves Example 2* F = presheaf,
2F: Mod  Sets: A ~> = Transition maps, u: B  A, :  K  ~>  Presheaves K

27 Presheaves Example 3 M, N = modules,
Mod  Sets: A ~> + Transition maps, u: B  A Presheaves

28 Presheaves Example 3* F, G = presheaves,
F+G: Mod  Sets: A ~> + Transition maps, u: B  A Presheaves

29 Presheaves Why are presheaves a solution? Yoneda Lemma
The functorial map @: Mod ® is fully faithfull M M ≈ N Presheaves @Mod Mod

30 Presheaves F ¥ G = pointwise cartesian product A@1 = {Æ}
Example: E = F ¥ G = pointwise cartesian product G F ¥ G ¥ G) = ¥ G Presheaves (f,g) g f F = {Æ} 1 = {Æ} is terminal: Unique !:X ® 1: x ~> Æ

31 Presheaves F + G = pointwise disjoint union A@G G H A@H A@0
Example: E = F + G = pointwise disjoint union Presheaves G + H + H) = + H G H 0 = Æ is initial: Unique !:0 ® X: ? ~> ? ®

32 Presheaves A@XY ª Hom(@A, XY) (Yoneda!) ª Hom(@A ¥ Y, X) (axiom)
Example: E = ª XY) (Yoneda!) ª ¥ Y, X) (axiom) Define: Presheaves = ¥ Y, X)

33 Presheaves Example: E = Mod@ subobject classifier 1 ® W
= {subpresheaves = {sieves 1 ® W : 0 Presheaves 1 W X Y c ! Subpresheaves(Y) ª Hom(Y,W)

34 ? Functorial Locs In Mod@ replace 2F by WF
Understand the musical meaning of the difference! = ={subsets of = {A-addressed local objective compositions in F} ObLocomA, but F = presheaf, not only module! WF ≈ ≈ ¥ F,W) ≈ ¥ F) = {A-addressed local functorial compositions in F} ? Functorial Locs

35 Functorial Locs ^: A@2F  A@WF K  A@F ~> K^  @A  F
  = {(f,x.f), f:X  A, x  K}  x ~> x.f Functorial Locs K F 1A f:X  A @A

36 H Functorial Locs E K Í Ÿ @F F = @EH ª @—2 f1: 0Ÿ  Ÿ: 0 ~> 1

37 Functorial Locs series S Î Ÿ11 @ Ÿ12 K = {S} S
More general: set of k sequences of pitch classes of length t+1 K = {S1,S2,...,Sk} This is a „polyphonic“ local composition K  Ÿ12 Ÿ12 S1 Sk

38 Functorial Locs s ≤ t, define morphism f: Ÿs  Ÿt e0 ~> ei(0)
Sk Ÿ12 Functorial Locs s ≤ t, define morphism f: Ÿs  Ÿt e0 ~> ei(0) e1 ~> ei(1) es ~> ei(s) e0 e1 es Ÿs S1.f Sk.f Ÿ12

39 The „functorial“ change K ~> K^ has dramatic consequences
for the global theory! I IV V II III VI VII I IV II VI V III VII Functorial Locs A = 0Ÿ X  Ÿ ~> X* = End*(X)  A = Ÿ12

40 Functorial Locs ToM, ch. 25 II* I* Ÿ12@Ÿ12 I*  II* =  I* IV* II* VI*

41 Functorial Locs X*  Ÿ12@Ÿ12 X*^  (Ÿ12@Ÿ12)^  @Ÿ12  @Ÿ12 (Ÿ12@Ÿ12)^
I*  II* =  II* I*^  II*^   II*^

42 Functorial Locs @Ÿ12 I*  e0.4 I*^ II*^ f@I*^f@II*^  e8.0 II* 
1Ÿ12 II*^ Functorial Locs e8.0 II* e11.3 f = e11.0: Ÿ12  Ÿ12 @Ÿ12 e0.4.e11.0 = e11.3.e11.0 = e8.0

43 Functorial Locs I* I*^ I*^  II*^ II* II*^ @Ÿ12

44 Functorial Locs Consequences for sheaves of functions Z Xi Xj (Xi)
(Xij) (Xj) (Xji) ¿ ≈ ?

45 Functorial Locs Grothendieck topology of finite covering families Xi Z
Xj ( Xi ¥Z Xj) Xi ¥Z Xj (Xj)

46 concept modeling unity infinite recursion completeness discourse
universal ramification ordered combinatorics concept modeling concept concept

47 concept modeling AnchorNote Pause Note Onset Duration Onset Loudness
Pitch Ÿ STRG

48 concept modeling MakroNote Satellites AnchorNote MakroNote Ornaments
Schenker Analysis Satellites AnchorNote Onset Loudness Duration Pitch Note STRG Ÿ Pause concept modeling MakroNote

49 FM-Synthesis concept modeling

50 concept modeling FM-Object Knot Support Modulator Amplitude Phase
FM-Synthesis FM-Object Knot concept modeling Support Modulator Amplitude Phase Frequency FM-Object

51 concept modeling Forms F = form name one of five „space“ types
a name diagram √ in Forms an identifier monomorphism in id: Functor(F) >® Frame(√) concept modeling Frame(√) Functor(F) F:id.type(√)

52 concept modeling renaming representation conjunction disjunction
Frame(√)-space for type: synonyme √ = „G“ ~> Functor(G) synonyme(√) = Functor(G) renaming simple √ = simple(√) representation concept modeling limit √ = name diagram ® limit(√) = lim(n. diagram ® conjunction colimit √ = name diagram ® colimit(√) = colim(n. diagram ® disjunction power √ = „G“ ~> Functor(G) power(√) = WFunctor(G) collection

53 concept modeling Denotators D = denotator name A address A K
Frame(√) K Î Functor(F) „A-valued point“ Functor(F) Form F

54 concept modeling

55 concept modeling E = Topos Mod@ = Topos R Í E S Mod Í Mod@ Names F
Forms S S(F) = (typeF,idF, √F) F concept modeling Dia(Formsº, Types Sema(Forms, = Types x x Dia(Formsº,

56 concept modeling E = Topos R Í E S Names F S(F) = (typeF,idF, √F)
Forms Sema(Forms,E ) = Types x Mono(E ) x Dia(Formsº,E ) Types Mono(E ) Dia(Formsº,E ) S S(F) = (typeF,idF, √F) F concept modeling

57 Names F √G Forms typeF concept modeling √F H typeG typeH √H G

58 concept modeling E -Denotators R Í E D = denotator name A
„address“ A Î R K: A ® Topor(F) Topor(F) Î E K concept modeling Form F:id.type(√) Frame(√) id: Topor(F)

59 concept modeling Galois Theory Form Semiotic Defining equation
Defining diagram fS(X) = 0 √ F x2 x1 xn x3 F2 Fr F1 concept modeling Field S Form Semiotic S

60 Local Techniques Qwertzuiopü¨$äölkjhgfdsayxcvbnm,.-
As¥≈©◊˙ASDFGHJKLéà£_:;MNBVCXYQWERTZUIOPè!?`=)(/&%ç*“ Local Techniques


Download ppt "Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘"

Similar presentations


Ads by Google