Download presentation
Presentation is loading. Please wait.
Published byRudolf Craig Modified over 9 years ago
1
Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science
2
Where we are... What is a topos? The topos of presheaves Functorial local compositions Concept modeling over topoi Contents
3
Where we are... C Í Ÿ12 (chords) M Í — 2 (motives) Ambient space
Ÿ12 = finite -> enumeration, Pólya & de Bruijn —2 = infinite -> ??
4
Where we are... B K Í B set module B @ 0Ÿ@B K Í 0Ÿ@B A
A = Ÿn: sequences (b0,b1,…,bn) A = B: self-addressed tones Need general addresses A
5
Where we are... B M Í A@B M Í B A@B = eB.Lin(A,B) A = R
= eB.Lin(R,B) ª B2
6
Where we are... Ÿ12 S A@B = eB.Lin(A,B) R = Ÿ, A = Ÿ11, B= Ÿ12
Series: S Î Ÿ12 = e Ÿ12.Lin(Ÿ11, Ÿ12) ª Ÿ12 12
7
I II III IV V VI VII Where we are...
8
Where we are... The class nerve cn(K) of global composition
is not classifying I IV II VI V III VII 10 15 5 6 2 Where we are...
9
Where we are... Motivic strip of Zig-Zag (15) 5 6 4 (16) (19) (19) 7 3
8 2 5 3 (15) Where we are... (16) (19) (19) (2) (11) (20) (10) (15)
10
B = „EH“ ª —2 M Í E H Where we are... E
11
Where we are... Have universal construction of a „resolution of KI“
res: ADn* ® KI It is determined only by the KI address A and the nerve n* of the covering atlas I. Where we are... ADn* KI res
12
Where we are... 0Dn* res KI 6 5 2 3 4 1 a d b c 1 2 3 4 6 5 5 6 3 4 1
13
„Classified“ Where we are...
The category ObLocomA of local objective A-addressed compositions has as objects the couples (K, of sets K of affine morphisms in and as morphisms f: (K, ® (L, set maps f: K ® L which are naturally induced by affine morphism F in The category ObGlocomA of global objective A-addressed compositions has as objects KI coverings of sets K by atlases I of local objective A-addressed compositions with manifold gluing conditions and manifold morphisms ff: KI ® LJ, including and compatible with atlas morphisms f: I ® J Where we are... „Classified“
14
What is a Topos? Sets cartesian products X x Y Mod@
F: Mod —> Sets presheaves have all these properties Sets cartesian products X x Y disjoint sums X È Y powersets XY characteristic maps c: X —> 2 no „algebra“ What is a Topos? Mod direct products A≈B has „algebra“ no powersets no characteristic maps
15
What is a Topos? A category E is a topos iff it
has terminal object 1 and products A ¥ B has initial object 0 and coproducts A + B has exponentials XY has a subobject classifier 1 ® W What is a Topos? Our examples: 1) E = Sets sets 2) E = presheaves over the category Mod of modules
16
What is a Topos? A ¥ B = cartesian product 1 = {Æ} is terminal:
Example: E = Sets A ¥ B = cartesian product B A ¥ B What is a Topos? (a,b) b a A 1 = {Æ} is terminal: There is a unique !:X ® 1: x ~> Æ
17
What is a Topos? A + B = disjoint union, 0 = Æ A B 0 = Æ is initial:
Example: E = Sets A + B = disjoint union, 0 = Æ A + B What is a Topos? A B 0 = Æ is initial: There is a unique !:0 ® X: ? ~> ?
18
What is a Topos? XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X)
Example: E = Sets XY = {maps f:Y ® X} Hom(Z, XY) ª Hom(Z ¥ Y, X) g: Z ® XY ~> g*: Z ¥ Y ® X g*(z,y)=g(z)(y) What is a Topos?
19
What is a Topos? Example: E = Sets subobject classifier 1 ® W
= 2 = {0,1} 1 ® 2: 0 ~> 0 X Y ! c What is a Topos? c(x) = 0 iff x Î X 1 2 Y X Subobjects(Y) ª Hom(Y,W) {0,1}
20
What is a Topos? Counterexample: E = ModR with R-linear maps
There is no subobject classifier here! 0-module X Y c ! What is a Topos? X = Ker(c) Y/X ≈ Im(c) absurd!
21
More generally, take the category Mod of modules over any rings, together with (di)affine morphism This is not only not a topos, it has other not very agreable properties: Have no module M+N for the property k or k iff k Have no module P(M) for the property K iff K What is a Topos?
22
Presheaves @M = presheaf of M
Problem: When replacing M by the set we loose all information about M. Solution: Replace a module M by the system of sets @M: Mod Sets: A ~> „set of all perspectives of M, as viewed from A“ Presheaves B u A M = u.v:C B A = g g.u @M = presheaf of M
23
Presheaves Mod@ = category of presheaves on Mod Presheaves:
F: Mod Sets: A ~> F(A) Together with the transition maps : for u:B A with the properties Presheaves = u.v: C B A = = category of presheaves on Mod
24
Presheaves Example 1 S = set, @S: Mod Sets: A ~> A@S = S
Transition maps, u: B A, = 1S : S S Presheaves „small topos within a large topos“ Sets @Sets
25
Presheaves Example 2 M = module,
Mod Sets: A ~> = Transition maps, u: B A, : K ~> Presheaves K
26
Presheaves Example 2* F = presheaf,
2F: Mod Sets: A ~> = Transition maps, u: B A, : K ~> Presheaves K
27
Presheaves Example 3 M, N = modules,
Mod Sets: A ~> + Transition maps, u: B A Presheaves
28
Presheaves Example 3* F, G = presheaves,
F+G: Mod Sets: A ~> + Transition maps, u: B A Presheaves
29
Presheaves Why are presheaves a solution? Yoneda Lemma
The functorial map @: Mod ® is fully faithfull M ≈ M ≈ N ≈ Presheaves @Mod Mod
30
Presheaves F ¥ G = pointwise cartesian product A@1 = {Æ}
Example: E = F ¥ G = pointwise cartesian product G F ¥ G ¥ G) = ¥ G Presheaves (f,g) g f F = {Æ} 1 = {Æ} is terminal: Unique !:X ® 1: x ~> Æ
31
Presheaves F + G = pointwise disjoint union A@G G H A@H A@0
Example: E = F + G = pointwise disjoint union Presheaves G + H + H) = + H G H 0 = Æ is initial: Unique !:0 ® X: ? ~> ? ®
32
Presheaves A@XY ª Hom(@A, XY) (Yoneda!) ª Hom(@A ¥ Y, X) (axiom)
Example: E = ª XY) (Yoneda!) ª ¥ Y, X) (axiom) Define: Presheaves = ¥ Y, X)
33
Presheaves Example: E = Mod@ subobject classifier 1 ® W
= {subpresheaves = {sieves 1 ® W : 0 Presheaves 1 W X Y c ! Subpresheaves(Y) ª Hom(Y,W)
34
? Functorial Locs In Mod@ replace 2F by WF
Understand the musical meaning of the difference! = ={subsets of = {A-addressed local objective compositions in F} ObLocomA, but F = presheaf, not only module! WF ≈ ≈ ¥ F,W) ≈ ¥ F) = {A-addressed local functorial compositions in F} ? Functorial Locs
35
Functorial Locs ^: A@2F A@WF K A@F ~> K^ @A F
= {(f,x.f), f:X A, x K} x ~> x.f Functorial Locs K F 1A f:X A @A
36
H Functorial Locs E K Í Ÿ @F F = @EH ª @—2 f1: 0Ÿ Ÿ: 0 ~> 1
37
Functorial Locs series S Î Ÿ11 @ Ÿ12 K = {S} S
More general: set of k sequences of pitch classes of length t+1 K = {S1,S2,...,Sk} This is a „polyphonic“ local composition K Ÿ12 Ÿ12 S1 Sk
38
Functorial Locs s ≤ t, define morphism f: Ÿs Ÿt e0 ~> ei(0)
Sk Ÿ12 Functorial Locs s ≤ t, define morphism f: Ÿs Ÿt e0 ~> ei(0) e1 ~> ei(1) es ~> ei(s) e0 e1 es Ÿs S1.f Sk.f Ÿ12
39
The „functorial“ change K ~> K^ has dramatic consequences
for the global theory! I IV V II III VI VII I IV II VI V III VII Functorial Locs A = 0Ÿ X Ÿ ~> X* = End*(X) A = Ÿ12
40
Functorial Locs ToM, ch. 25 II* I* Ÿ12@Ÿ12 I* II* = I* IV* II* VI*
41
Functorial Locs X* Ÿ12@Ÿ12 X*^ (Ÿ12@Ÿ12)^ @Ÿ12 @Ÿ12 (Ÿ12@Ÿ12)^
I* II* = II* I*^ II*^ II*^
42
Functorial Locs @Ÿ12 I* e0.4 I*^ II*^ f@I*^f@II*^ e8.0 II*
1Ÿ12 II*^ Functorial Locs e8.0 II* e11.3 f = e11.0: Ÿ12 Ÿ12 @Ÿ12 e0.4.e11.0 = e11.3.e11.0 = e8.0
43
Functorial Locs I* I*^ I*^ II*^ II* II*^ @Ÿ12
44
Functorial Locs Consequences for sheaves of functions Z Xi Xj (Xi)
(Xij) (Xj) (Xji) ¿ ≈ ?
45
Functorial Locs Grothendieck topology of finite covering families Xi Z
Xj ( Xi ¥Z Xj) Xi ¥Z Xj (Xj)
46
concept modeling unity infinite recursion completeness discourse
universal ramification ordered combinatorics concept modeling concept concept
47
concept modeling AnchorNote Pause Note Onset Duration Onset Loudness
Pitch – – – Ÿ STRG –
48
concept modeling MakroNote Satellites AnchorNote MakroNote Ornaments
Schenker Analysis Satellites AnchorNote – Onset Loudness Duration Pitch Note STRG Ÿ Pause concept modeling MakroNote
49
FM-Synthesis concept modeling
50
concept modeling FM-Object Knot Support Modulator Amplitude Phase
FM-Synthesis FM-Object Knot concept modeling Support Modulator Amplitude Phase Frequency FM-Object – – –
51
concept modeling Forms F = form name one of five „space“ types
a name diagram √ in Forms an identifier monomorphism in id: Functor(F) >® Frame(√) concept modeling Frame(√) >® Functor(F) F:id.type(√)
52
concept modeling renaming representation conjunction disjunction
Frame(√)-space for type: synonyme √ = „G“ ~> Functor(G) synonyme(√) = Functor(G) renaming simple √ = simple(√) representation concept modeling limit √ = name diagram ® limit(√) = lim(n. diagram ® conjunction colimit √ = name diagram ® colimit(√) = colim(n. diagram ® disjunction power √ = „G“ ~> Functor(G) power(√) = WFunctor(G) collection
53
concept modeling Denotators D = denotator name A address A K
Frame(√) K Î Functor(F) „A-valued point“ >® Functor(F) Form F
54
concept modeling
55
concept modeling E = Topos Mod@ = Topos R Í E S Mod Í Mod@ Names F
Forms S S(F) = (typeF,idF, √F) F concept modeling Dia(Formsº, Types Sema(Forms, = Types x x Dia(Formsº,
56
concept modeling E = Topos R Í E S Names F S(F) = (typeF,idF, √F)
Forms Sema(Forms,E ) = Types x Mono(E ) x Dia(Formsº,E ) Types Mono(E ) Dia(Formsº,E ) S S(F) = (typeF,idF, √F) F concept modeling
57
Names F √G Forms typeF concept modeling √F H typeG typeH √H G
58
concept modeling E -Denotators R Í E D = denotator name A
„address“ A Î R K: A ® Topor(F) Topor(F) Î E K concept modeling Form F:id.type(√) Frame(√) >® id: Topor(F)
59
concept modeling Galois Theory Form Semiotic Defining equation
Defining diagram fS(X) = 0 √ F x2 x1 xn x3 F2 Fr F1 concept modeling Field S Form Semiotic S
60
Local Techniques Qwertzuiopü¨$äölkjhgfdsayxcvbnm,.-
As¥≈©◊˙ASDFGHJKLéà£_:;MNBVCXYQWERTZUIOPè!?`=)(/&%ç*“ Local Techniques
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.