Download presentation
Presentation is loading. Please wait.
Published byMadison Newman Modified over 9 years ago
2
Dr. Hugh Blanton ENTC 3331
3
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 2 Fields and Waves VECTORS and VECTOR CALCULUS
4
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 3 VECTORS Today’s Class will focus on: vectors - description in 3 coordinate systems vector operations - DOT & CROSS PRODUCT vector calculus - AREA and VOLUME INTEGRALS
5
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 4 VECTOR REPRESENTATION 3 PRIMARY COORDINATE SYSTEMS: RECTANGULAR CYLINDRICAL SPHERICAL Choice is based on symmetry of problem Examples: Sheets - RECTANGULAR Wires/Cables - CYLINDRICAL Spheres - SPHERICAL
6
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 5 Orthogonal Coordinate Systems: (coordinates mutually perpendicular) Spherical Coordinates Cylindrical Coordinates Cartesian Coordinates P (x,y,z) P (r, Θ, Φ) P (r, Θ, z) x y z P(x,y,z) θ z r x y z P(r, θ, z) θ Φ r z y x P(r, θ, Φ) Page 108 Rectangular Coordinates
7
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 6 -Parabolic Cylindrical Coordinates (u,v,z) -Paraboloidal Coordinates (u, v, Φ) -Elliptic Cylindrical Coordinates (u, v, z) -Prolate Spheroidal Coordinates (ξ, η, φ) -Oblate Spheroidal Coordinates (ξ, η, φ) -Bipolar Coordinates (u,v,z) -Toroidal Coordinates (u, v, Φ) -Conical Coordinates (λ, μ, ν) -Confocal Ellipsoidal Coordinate (λ, μ, ν) -Confocal Paraboloidal Coordinate (λ, μ, ν)
8
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 7 Parabolic Cylindrical Coordinates
9
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 8 Paraboloidal Coordinates
10
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 9 Elliptic Cylindrical Coordinates
11
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 10 Prolate Spheroidal Coordinates
12
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 11 Oblate Spheroidal Coordinates
13
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 12 Bipolar Coordinates
14
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 13 Toroidal Coordinates
15
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 14 Conical Coordinates
16
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 15 Confocal Ellipsoidal Coordinate
17
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 16 Confocal Paraboloidal Coordinate
18
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 17 Cartesian Coordinates P(x,y,z) Spherical Coordinates P(r, θ, Φ) Cylindrical Coordinates P(r, θ, z) x y z P(x,y,z) θ z r x y z P(r, θ, z) θ Φ r z y x P(r, θ, Φ)
19
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 18 VECTOR NOTATION VECTOR NOTATION: Rectangular or Cartesian Coordinate System x z y Dot Product Cross Product Magnitude of vector (SCALAR) (VECTOR)
20
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 19 Cartesian Coordinates Page 109 x y z Z plane y plane x plane x1x1 y1y1 z1z1 AxAx AyAy AzAz ( x, y, z) Vector representation Magnitude of A Position vector A Base vector properties
21
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 20 x y z AxAx AyAy AzAz Dot product: Cross product: Back Cartesian Coordinates Page 108
22
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 21 VECTOR REPRESENTATION: CYLINDRICAL COORDINATES Cylindrical representation uses: r, , z UNIT VECTORS: Dot Product (SCALAR) r z P x z y
23
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 22 VECTOR REPRESENTATION: SPHERICAL COORDINATES r P x z y Spherical representation uses: r, , UNIT VECTORS: Dot Product (SCALAR)
24
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 23 x z y VECTOR REPRESENTATION: UNIT VECTORS Unit Vector Representation for Rectangular Coordinate System The Unit Vectors imply : Points in the direction of increasing x Points in the direction of increasing y Points in the direction of increasing z Rectangular Coordinate System
25
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 24 r z P x z y VECTOR REPRESENTATION: UNIT VECTORS Cylindrical Coordinate System The Unit Vectors imply : Points in the direction of increasing r Points in the direction of increasing Points in the direction of increasing z
26
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 25 VECTOR REPRESENTATION: UNIT VECTORS Spherical Coordinate System r P x z y The Unit Vectors imply : Points in the direction of increasing r Points in the direction of increasing Points in the direction of increasing
27
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 26 RECTANGULAR Coordinate Systems CYLINDRICAL Coordinate Systems SPHERICAL Coordinate Systems NOTE THE ORDER! r, , zr, , Note: We do not emphasize transformations between coordinate systems VECTOR REPRESENTATION: UNIT VECTORS Summary
28
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 27 METRIC COEFFICIENTS 1. Rectangular Coordinates: When you move a small amount in x-direction, the distance is dx In a similar fashion, you generate dy and dz Unit is in “meters”
29
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 28 Cartesian Coordinates Differential quantities: Length: Area: Volume: Page 109
30
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 29 METRIC COEFFICIENTS 2. Cylindrical Coordinates: Distance = r d x y dd r Differential Distances: ( dr, rd , dz )
31
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 30 3. Spherical Coordinates: Distance = r sin d x y dd r sin Differential Distances: ( dr, rd , r sin d ) r P x z y METRIC COEFFICIENTS
32
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 31 Representation of differential length dl in coordinate systems: rectangular cylindrical spherical METRIC COEFFICIENTS
33
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 32 AREA INTEGRALS integration over 2 “delta” distances dx dy Example: x y 2 6 37 AREA == 16 Note that: z = constant In this course, area & surface integrals will be on similar types of surfaces e.g. r =constant or = constant or = constant et c….
34
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 33 Representation of differential surface element: Vector is NORMAL to surface SURFACE NORMAL
35
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 34 DIFFERENTIALS FOR INTEGRALS Example of Line differentials or Example of Surface differentials or Example of Volume differentials
36
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 35 Base Vectors A1A1 r radial distance in x-y plane Φ azimuth angle measured from the positive x-axis Z Cylindrical Coordinates Pages 109-112 Back ( r, θ, z) Vector representation Magnitude of A Position vector A Base vector properties
37
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 36 Dot product: Cross product: B A Back Cylindrical Coordinates Pages 109-111
38
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 37 Cylindrical Coordinates Differential quantities: Length: Area: Volume: Pages 109-112
39
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 38 Spherical Coordinates Pages 113-115 Back (R, θ, Φ) Vector representation Magnitude of A Position vector A Base vector properties
40
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 39 Dot product: Cross product: Back B A Spherical Coordinates Pages 113-114
41
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 40 Spherical Coordinates Differential quantities: Length: Area: Volume: Pages 113-115 Back
42
Dr. Blanton - ENTC 3331 - Orthogonal Coordinate Systems 41 Back Cartesian to Cylindrical Transformation Page 115
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.