Presentation is loading. Please wait.

Presentation is loading. Please wait.

Maths revision course by Miriam Hanks

Similar presentations


Presentation on theme: "Maths revision course by Miriam Hanks"— Presentation transcript:

1 Maths revision course by Miriam Hanks
Vectors – what are they? Vectors describe movements i, j and k represent movement in the x,y and z directions Maths revision course by Miriam Hanks

2 Maths revision course by Miriam Hanks
Vectors – How to calculate To calculate vector BA, subtract: BA = a - b A B O Maths revision course by Miriam Hanks

3 Maths revision course by Miriam Hanks
Vectors - resultants To find the resultant, add the components of the vectors together resultant Maths revision course by Miriam Hanks

4 Maths revision course by Miriam Hanks
Vectors - magnitude The magnitude of a vector is its length. The notation for this is vertical lines: eg |a| or |PQ| To find the magnitude of a vector, use Pythagoras or the distance formula. Maths revision course by Miriam Hanks

5 Maths revision course by Miriam Hanks
Vectors - Collinearity To show that 3 points are in a straight line (ie collinear): Work out 2 vectors and show that one is a multiple of the other Show that the vectors have a common point Maths revision course by Miriam Hanks

6 Maths revision course by Miriam Hanks
Vectors in real life Sat navs work out their position from satellites in the sky, but then use vectors to decide on a route. Maths revision course by Miriam Hanks

7 Maths revision course by Miriam Hanks
Vectors – Dot product There are 2 formulae for the dot product on the formula sheet: dot product = x1x2 + y1 y2 +z1z2 where x,y,z are the components of each vector. dot product = a bcos where a is the magnitude of vector a (use Pythagoras for this) Note these 2 formulae equal each other, so: a bcos = x1x2 + y1 y2 +z1z2 Maths revision course by Miriam Hanks

8 Maths revision course by Miriam Hanks
Dot product of vectors at 90o The dot product of 2 vectors at 90o is zero and vice versa Why? Maths revision course by Miriam Hanks

9 Maths revision course by Miriam Hanks
Dot product of a vector with itself The dot product of vector a with itself is: a2 Why? Maths revision course by Miriam Hanks

10 Maths revision course by Miriam Hanks
The dot product in real life When is the dot product used in real life? Computer games programmers use the dot product to find the angle between 2 characters, so they know whether they are facing each other. Maths revision course by Miriam Hanks


Download ppt "Maths revision course by Miriam Hanks"

Similar presentations


Ads by Google