Download presentation
Presentation is loading. Please wait.
Published byPhebe Tucker Modified over 9 years ago
1
These angles will have the same initial and terminal sides. x y 420º x y 240º Find a coterminal angle. Give at least 3 answers for each Date: 4.3 Trigonometry Extended: The Circular Functions 60º -120º Subtract 360º from 60º : - 300º Add 360º to 420º : 780º Subtract 360º from -120º : - 480º Add 360º to 240º : 600º
2
Coterminal Angles An angle of xº is coterminal with angles of xº + k · 360º where k is an integer. Assume the following angles are in standard position. Find a positive angle that is coterminal with: a. a 30º angleb. a -2π/3 angle a.For a 30º angle, add 360º to find the coterminal angle. 30º + 360º = 390º A 390º angle is coterminal with a 30º angle. b.For a -2π/3 angle, add 2π (same as 360º) to find the coterminal angle. - 2π/3 + 2π = 4π/3 A 4π/3 angle is coterminal with a -2π/3 angle.
3
Let P = (-3, -4) be a point on the terminal side of . Find each of the six trigonometric functions of . r x = -3y = -4 P =(-3, -4) x y -5 5 5 Text Example The bottom row shows the reciprocals of the row above. -4 -3
4
Definitions of Trigonometric Functions of Any Angle If is an angle in standard position, and let P = (x, y) be a point on the terminal side of . If r = x 2 + y 2 is the distance from (0, 0) to (x, y), the six trigonometric functions of are defined by the following ratios. P = (x, y) r x y
5
Paper Plate Unit Circle Evaluate, if possible, the cosine function and the sine function at the following four quadrantal angles and place them on your paper plate Unit Circle: (1,0) (0,1) (0,-1) (-1,0)
6
Definition of a Reference Angle Let be a nonacute angle in standard position that lies in a quadrant. Its reference angle is the positive acute angle ´ prime formed by the terminal side or and the x-axis. a b a b P(a,b) Find the reference angle , for: =315º Solution: ´ =360 º - 315 º = 45 º
7
More on the Unit Circle Paper Plate and Reference Angles Find a reference angle,, for each of the following angles (and place them on your Unit circle too): 30º 60º π/4 DAY 2
8
x y STUDENTS Quadrant II SINE positive (and cosecant) ALL Quadrant I ALL FUNCTIONS positive TAKE Quadrant III TANGENT positive (and cotangent) CALCULUS Quadrant IV COSINE positive (and secant) The Signs of the Trigonometric Functions If tan 0, name the quadrant that lies. IV
9
Use reference angles to find the exact value of sin 135° Step 1 Find the reference angle 135 º terminates in quadrant II with a reference angle ´ = 180 º – 135 º = 45 º x y 135° 45° Text Example The function value, sin 45 º, for the reference angle is sin 45 º = Step 2 Use the quadrant in which lies to prefix the appropriate sign to the function value. Because the sine is positive in quadrant II, put a + sign before the function value of the reference angle. sin 135 = +sin45 =
10
60º 30º Use reference angles to find the exact value of the following trigonometric function (sketch it): sin 5π/3 in QIV, Sine is negative in QIV -
11
Use reference angles to find the exact value of the following trigonometric functions (sketch it). a. cos 2π/3b. tan 225 º in QII, Cosine is negative in QII in QIII, Tangent is positive in QIII c. sec (-30 º ) in QIV, Secant is positive in QIV
12
Unit Circle
13
Find cos θ and tan θ by using the given information to construct a reference triangle: sin θ = 3/7 and tan θ < 0 θ is in QII 3 7
14
Trigonometry Extended: The Circular Function
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.