Presentation is loading. Please wait.

Presentation is loading. Please wait.

Design of a 9-cell Cavity Test Cryomodule for ILC in China IHEP-TIPC ILC Cryomodule R&D Group Institute of High Energy Physics (IHEP), CAS Technical Institute.

Similar presentations


Presentation on theme: "Design of a 9-cell Cavity Test Cryomodule for ILC in China IHEP-TIPC ILC Cryomodule R&D Group Institute of High Energy Physics (IHEP), CAS Technical Institute."— Presentation transcript:

1 Design of a 9-cell Cavity Test Cryomodule for ILC in China IHEP-TIPC ILC Cryomodule R&D Group Institute of High Energy Physics (IHEP), CAS Technical Institute of Physics and Chemistry (TIPC), CAS 2007.11.6

2 Outline Introduction to the ILC Cryomodule collaboration group Design of a 9-cell cavity test cryomodule (Structure, Flow diagram ) Thermal and mechanical simulation Collaboration work with KEK STF

3 IHEP-TIPC ILC Cryomodule R&D group IHEP 高杰 (Gao Jie) 研究员 孙毅 (Sun Yi) 副研究员 徐庆金 (Xu Qingjin) 博士 翟纪元 (Zhai Jiyuan) 助研 李春华 (Li Chunhua) 工程师 候治龙 (Hou Zilong) 工程师 TIPC 刘立强 (Liu Liqiang) 研究员 熊联友 (Xiong Lianyou) 副研究员 陆文海 (Lu Wenhai) 高级实验师 宗占国 (Zong Zhanguo) 博士生 赵同宪 (Zhao Tongxian) 博士生 Monthly regular meeting Group leader: Prof. Jie Gao

4 Work Assignment Structure design :徐庆金,刘立强,熊联友,陆文海,孙毅,宗占国,翟纪元, 葛眀启,李春华,赵同宪,高杰。 Fluid and temperature field simulation :徐庆金,赵同宪,熊联友,刘立强 Mechanical and thermal stress simulation : 候治龙,徐庆金,宗占国,李春华 Design of tuner :徐庆金,葛眀启,候治龙,李春华 Design of the Input coupler :翟纪元,葛眀启,徐庆金,李春华 Fabrication techniques :陆文海,宗占国,李春华,徐庆金 3D engineering drawing :李春华,赵同宪 Cost estimation :熊联友,陆文海,孙毅

5 Design of a 9-cell cavity test cryomodule - Structure Structure of the China test cryomodule

6 Design of a 9-cell cavity test cryomodule - Flow diagram Right: T-S diagram of the 2K helium Lower: Flow diagram of the cryomodule

7 Thermal and mechanical simulation Upper: Vertical displacement at the room temp. Upper right: Axial displacement at the room temp. Lower right: Transverse displacement at the room temp.

8 Thermal and mechanical simulation Upper: Vertical displacement at 2K. Upper right: Axial displacement at 2K. Lower right: Transverse displacement at 2K.

9 Thermal and mechanical simulation Temperature distribution and thermal displacement of the 5K shield with the helium flow 0.08 g/s

10 Thermal and mechanical simulation Upper: Stress distribution of the support post at the room temp. Upper right: Horizontal displacement at the room temp. Lower right: Vertical displacement at the room temp.

11 Thermal and mechanical simulation Stress distribution of the support post after cool down Static temperature distribution of the support post Vertical displacement of the support post after cool down Horizontal displacement of the support post after cool down

12 Heat load estimation Heat sourceStatic (W)Dynamic (W) 70K5K2K70K5K2K Radiation40.15//// Supports30.40.05/// Input coupler 7.21.20.0430.20.03 Cavity0.50.20.1//0.8 Instrumenta tion cable 10.30.2/// other10.30.2// Summary16.72.550.630.21.03

13 To be continued Engineering design of the test cryomodule 9-cell cavity tuner design Fabrication techniques of the cryomodule Budget application Fabrication ……

14 Collaboration work with KEK STF

15 35MV Power Coupler Simulation Simulation model of the 35MV power coupler

16 35MV Power Coupler Simulation Temperature distribution of the 35MV power coupler

17 35MV Power Coupler Simulation Temperature distribution of the 35MV power coupler Heat load: 2K - 0.04 W; 5K - 1.2 W; 80K - 7.2W Half Cross section of thermal anchors: 2K - 0.07 W; 5K - 1.3 W; 80K - 6.8W

18 45MV Power Coupler Simulation Simulation model of the 45MV power coupler

19 45MV Power Coupler Simulation Temperature distribution of the 45MV power coupler

20 45MV Power Coupler Simulation Temperature distribution of the 45MV power coupler Heat load: SS316L thickness 0.7mm: 2K - 0.06 W; 5K - 3.5 W; 80K - -2.0W SS316L thickness 1.5mm: 2K - 0.064 W; 5K - 3.6 W; 80K - -2.1W

21 STF 5K shield simulation Simulation model of the STF 5K shield

22 STF 5K shield simulation Mass flow rate of helium: 1 g/s Maximum temp. difference: Helium inlet temperature: 5.0 K Hot spot temp. (coupler port): 5.91K Helium outlet temperature: 5.25 K Mass flow rate of helium: 1 g/s Maximum temp. difference: 0.91K Helium inlet temperature: 5.0 K Hot spot temp. (coupler port): 5.91K Helium outlet temperature: 5.25 K Temperature distribution of the STF 5K shield (1 coupler)

23 STF 80K shield simulation Simulation model of the STF 80K shield

24 Mass flow rate of nitrogen: 1 g/s Maximum temp. difference: 11.05K Nitrogen inlet temperature: 80 K Hot spot temp. (shield end): 91.05K Nitrogen outlet temperature: 86.8 K Temperature distribution of the STF 80K shield (1 coupler) STF 80K shield simulation

25 Collaboration work with KEK STF Vacuum barrier design of the STF Cryomodule Length: 2K – 650mm(t1.5); 5K – 600mm(t0.8); 80K – 300mm(t0.8) Heat load: 2K – 0.05W; 5K – 1.69W; 80K – 8.18W; Outer surface temp. – 286.8K. (Natural convection coefficient: 4W/m 2 K ) Velocity distribution of the air out of the connection pipe Temperature distribution of the vacuum isolation structure

26 Thank you!


Download ppt "Design of a 9-cell Cavity Test Cryomodule for ILC in China IHEP-TIPC ILC Cryomodule R&D Group Institute of High Energy Physics (IHEP), CAS Technical Institute."

Similar presentations


Ads by Google