Download presentation
Presentation is loading. Please wait.
Published byChad Holland Modified over 9 years ago
1
Inferring gene regulatory networks with non-stationary dynamic Bayesian networks Dirk Husmeier Frank Dondelinger Sophie Lebre Biomathematics & Statistics Scotland
2
Overview Introduction Non-homogeneous dynamic Bayesian network for non-stationary processes Flexible network structure Open problems
3
Can we learn signalling pathways from postgenomic data? From Sachs et al Science 2005
4
Network reconstruction from postgenomic data
5
Friedman et al. (2000), J. Comp. Biol. 7, 601-620 Marriage between graph theory and probability theory
6
Bayes net ODE model
7
A CB D EF NODES EDGES Graph theory Directed acyclic graph (DAG) representing conditional independence relations. Probability theory It is possible to score a network in light of the data: P(D|M), D:data, M: network structure. We can infer how well a particular network explains the observed data.
8
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise BGe (Linear model) A P1 P2 P4 P3 w1 w4 w2 w3
9
BDe (Nonlinear discretized model) P1 P2 P1 P2 Activator Repressor Activator Repressor Activation Inhibition Allow for noise: probabilities Conditional multinomial distribution P P
10
Model Parameters q Integral analytically tractable!
11
BDe: UAI 1994 BGe: UAI 1995
12
Dynamic Bayesian network
13
Example: 2 genes 16 different network structures Best network: maximum score
14
Identify the best network structure Ideal scenario: Large data sets, low noise
15
Uncertainty about the best network structure Limited number of experimental replications, high noise
16
Sample of high-scoring networks
17
Feature extraction, e.g. marginal posterior probabilities of the edges
18
Sample of high-scoring networks Feature extraction, e.g. marginal posterior probabilities of the edges High-confident edge High-confident non-edge Uncertainty about edges
19
Can we generalize this scheme to more than 2 genes? In principle yes. However …
20
Number of structures Number of nodes
21
Configuration space of network structures Find the high-scoring structures Sampling from the posterior distribution Taken from the MSc thesis by Ben Calderhead
22
Madigan & York (1995), Guidici & Castello (2003)
23
Configuration space of network structures MCMC Local change Ifaccept If accept with probability Taken from the MSc thesis by Ben Calderhead
24
Overview Introduction Non-homogeneous dynamic Bayesian networks for non-stationary processes Flexible network structure Open problems
26
Dynamic Bayesian network
27
Example: 4 genes, 10 time points t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
28
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Standard dynamic Bayesian network: homogeneous model
29
Limitations of the homogeneity assumption
30
Our new model: heterogeneous dynamic Bayesian network. Here: 2 components t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
31
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Our new model: heterogeneous dynamic Bayesian network. Here: 3 components
32
Learning with MCMC q k h Number of components (here: 3) Allocation vector
33
Non-homogeneous model Non-linear model
34
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise BGe: Linear model A P1 P2 P4 P3 w1 w4 w2 w3
35
BDe: Nonlinear discretized model P1 P2 P1 P2 Activator Repressor Activator Repressor Activation Inhibition Allow for noise: probabilities Conditional multinomial distribution P P
36
Pros and cons of the two models Linear Gaussian model Restriction to linear processes Original data no information loss Multinomial model Nonlinear model Discretization information loss
37
Can we get an approximate nonlinear model without data discretization? y x
38
Idea: piecewise linear model y x
39
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Inhomogeneous dynamic Bayesian network with common changepoints
40
Inhomogenous dynamic Bayesian network with node-specific changepoints t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
41
NIPS 2009
42
Overview Introduction Non-homogeneous dynamic Bayesian network for non-stationary processes Flexible network structure Open problems
43
Non-stationarity in the regulatory process
44
Non-stationarity in the network structure
45
ICML 2010
46
Flexible network structure with regularization
49
Morphogenesis in Drosophila melanogaster Gene expression measurements over 66 time steps of 4028 genes (Arbeitman et al., Science, 2002). Selection of 11 genes involved in muscle development. Zhao et al. (2006), Bioinformatics 22
50
Transition probabilities: flexible structure with regularization Morphogenetic transitions: Embryo larva larva pupa pupa adult
51
Comparison with: Dondelinger, Lèbre & Husmeier Ahmed & Xing
57
Collaboration with Frank Dondelinger and Sophie Lèbre NIPS 2010
59
Method based on homogeneous DBNs Method based on differential equations
61
Sample of high-scoring networks
62
Feature extraction, e.g. marginal posterior probabilities of the edges
63
Method based on homogeneous DBNs Method based on differential equations
64
Overview Introduction Non-homogeneous dynamic Bayesian network for non-stationary processes Flexible network structure Open problems
66
Exponential versus binomial prior distribution Exploration of various information sharing options
67
How to deal with static data?
68
Change-point process Free allocation
69
Allocation sampler versus change-point process More flexibility, unrestricted mixture model. Not restricted to time series Higher computational costs Incorporates plausible prior knowledge for time series. Reduced complexity Less universal, not applicable to static data
70
Marco Grzegorczyk University of Dortmund Germany Frank Dondelinger Biomathematics & Statistics Scotland United Kingdom Sophie Lèbre Université de Strasbourg France Acknowledgements
71
Further details for discussion during question time
72
Details on exponential prior
73
Hierarchical Bayesian model
76
MCMC scheme (for symmetric proposal distributions)
77
Details on other priors
80
where
83
Partition function Ignoring the fan-in restriction: Number of genes
84
Simulation study We randomly generated 10 networks with 10 nodes each. Number of regulators for each node drawn from a Poisson distribution with mean=3. 5 time series segments Network changes: number of changes drawn from a Poisson distribution. For each segment: time series of length 50 generated from a linear regression model, interaction parameters drawn from N(0,1), iid Gaussian noise from N(0,1).
85
Synthetic simulation study No information sharing between adjacent segments Information sharing between adjacent segments Frank Dondelinger, Sophie Lèbre, Dirk Husmeier: ICML 2010
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.