Download presentation
Presentation is loading. Please wait.
Published byPriscilla Hawkins Modified over 9 years ago
1
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular Spectroscopy @ Champaign-Urbana, Illinois, The United States 2014 / June / 16th MI13 Shunji Kasahara 1, Kohei Tada 1†, Takashi Ishiwata 2, and Eizi Hirota 3 1 Kobe University, Japan; 2 Hiroshima City University, Japan; 3 The Graduate University for Advanced Studies, Japan; † Research Fellow of Japan Society for the Promotion of Science.
2
Introduction Introduction D 3h Wavenumber / 1000 cm -1 20 15 10 5 0 NO 2 + O NO 3 NO + O 2 O2 (b 1Σg+)O2 (b 1Σg+) O2 (a 1Δg)O2 (a 1Δg) O2 (X 3Σg-)O2 (X 3Σg-) B 2 E’ A 2 E’’ X 2A2’X 2A2’ Vibronic Band ~ 16000 cm -1 (~ 625 nm) Vibronic Band ~ 16000 cm -1 (~ 625 nm) 0-0 band ~ 15100 cm -1 (~ 662 nm) 0-0 band ~ 15100 cm -1 (~ 662 nm) B - X 遷移 K. Mikhaylichenko et al., J. Chem. Phys., 105, 6807 (1996) reaction coordinate NO 2 + O 3 → NO 3 + O 2 N 2 O 5 ⇄ NO 3 + NO 2 B 2 E’ : … (4e’) 3 (1e’’) 4 (1a 2 ) 2 ~ 15000 cm -1 A 2 E’’ : … (4e’) 4 (1e’’) 3 (1a 2 ) 2 ~ 7000 cm -1 X 2 A 2 ’ : … (4e’) 4 (1e’’) 4 (1a 2 ) 1 0 cm -1 662 nm Absorption spectrum of 14 NO 3 (Visible) J. Chem. Soc. Faraday 1176, 785 (1980).
3
⑤ LIF and Absorption spectra of 14 NO 3 B-X transition Absorption spectrum of 14 NO 3 (Visible) J. Chem. Soc. Faraday 1176, 785 (1980). 15000 15200 15400 15600 15800 16000 16200 16400 Wavenumber / cm -1 N 2 O 5 → NO 3 + NO 2 M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) Resolution : 0.2 cm -1 14 NO 3 B 2 E’-X 2 A 2 ’ transition
4
15000 15200 15400 15600 15800 16000 16200 16400 Wavenumber / cm -1 15000 15200 15400 15600 15800 16000 16200 16400 Wavenumber / cm -1 LIF spectra of 14 NO 3 and 14 NO 2 N 2 O 5 → NO 3 + NO 2 R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975) Vibronic band 0 - 0 band M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) NO 2 Resolution : 0.2 cm -1 INTENSITY ×5 ? 14 NO 2 A 2 B 2 -X 2 A 1 transition (I max at 16849.8 cm -1 ) 14 NO 3 B 2 E’-X 2 A 2 ’ transition
5
D Exprimental setup Absolute wavenumber mesurement system (Accuracy : 0.0001 cm -1 ) Etalon Liq. N 2 Pump Pulsed Nozzle Skimmer ( ϕ = 2 mm) Filter N 2 O 5 → NO 3 + NO 2 Slit (2 mm) PBS Molecular Beam (Typical linewidth : 0.0007 cm -1 ) N 2 O 5 + Ar Computer 532 nm around 660 or 625 nm Single mode laser ( Γ = 0.00003 cm -1 ) PD BS : Beam splitter PBS : Polarization beam splitter EOM : Electro-optic modulator PD : Photo diode PMT : Photomultiplier tube BS EOM I 2 Cell Heater 300 ℃ NO 2 + He Ring Dye Laser Nd:YVO 4 Laser Mirror Heater off Photon Counter PMT
6
~ 150 strong (> 15% of max) lines and more than 3000 weak (< 15% of max) lines were observed. ← too many! The rotational assignment was very difficult. (1) Combination difference → 0.0248 cm -1 line pairs (2) Zeeman effect → Unambiguous Assignment High-resolution LIF spectrum 14 NO 3 B-X 0-0 band at 662 nm 0.1 cm -1 0.0248 cm -1
7
σ-pump (H ⊥ E) ΔM J = ±1 π-pump (H // E) ΔM J = 0 0.0246 cm -1 Zeeman effect around 15100.2 cm -1 40 G 70 G 100 G 160 G 190 G 220 G 305 G 40 G 70 G 100 G 160 G 190 G 220 G 305 G σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 (σ:4+6/π:2+3) pair
8
Symmetry-adopted basis sets The X 2 A 2 ’ state: The B 2 E’ state: Hund’s case (b) basis Hund’s case (a) basis
9
The X 2 A 2 ’ state: H Z = g S μ B H·S The B 2 E’ state: H Z = g S μ B H·S + g L μ B H·L eff Refs: Endo et al., J. Chem. Phys., 81, 122 (1984) Hirota, High-Resolution Spectroscopy of Transient Molecules, Springer (1985) μ B (= 4.6686×10 -5 cm -1 G -1 ): Bohr magneton, g S : the electron spin g factor, g L : the electron orbital g factor, and ζ e d: the effective value of. Zeeman Hamiltonians and matrix elements
10
(σ:4+6/π:2+3) pair Zeeman splitting: transition to ( 2 E’ 3/2, J = 1.5) J = 1.5 ← 1.5 J = 1.5 ← 0.5 At 300 G + 0.5 + 1.5 – 0.5 – 1.5 – 0.5 + 0.5 + 1.5 + 0.5 – 0.5 – 1.5 MJMJ σ-pump ΔM J = ±1 g S = 2.0215(4) g S = 2.103(6) g L ζ e d = – 0.138(11) + 0.5 – 0.5 + 1.5 + 0.5 – 0.5 – 1.5 + 1.5 + 0.5 – 0.5 – 1.5 MJMJ Magnetic field / G Term energy / cm -1 J’ = 1.5 J” = 0.5 J” = 1.5 ΔMJ (MJ”)ΔMJ (MJ”)
11
σ-pump (H ⊥ E) ΔM J = ±1 π-pump (H // E) ΔM J = 0 Zeeman effect around 15130.75 cm -1 70 G 360 G 0.0246 cm -1 70 G 305 G 190 G 0.0246 cm -1 σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 (σ:2+3/π:1+2) pair
12
H = 0 G 20 G 40 G 70 G 130 G190 G250 G300 G360 G σ-pump (H ⊥ E) ΔM J =±1 Energy / cm -1 J’’=1.5 J’’=0.5 J’=0.5 MJMJ + 0.5 ‐ 0.5 + 0.5 ‐ 0.5 + 0.5 ‐ 0.5 + 1.5 ‐ 1.5 Magnetic field / Gauss B 2 E’ 1/2 X 2 A 2 ’(K’’=0 , N’’=1) σ-pump (H ⊥ E) Wavenumber / cm -1 Magnetic field / Gauss 70 Gauss 15130.80 15131.70 The determined g-factors: lower: g S = 2.0215 (fixed) upper: g S = 1.892(26) g L ζ e d = 0.214(51) (σ:2+3/π:1+2) pair Zeeman splitting: transition to ( 2 E’ 1/2, J = 0.5) σ-pump : ● π-pump : ● Calc : ― M J = ‐ 0.5 M J = +0.5 Perturbation ?
13
2 E’ 3/2 2 E’ 1/2 2 A 2 ’ (K” = 0, N” = 1) J’ = 1.5 J’ = 0.5 J” = 0.5 J” = 1.5 0.0246 cm -1 QR R Q QP 2 E’ 3/2 ← 2 A 2 ’ : 7 transitions Assigned line pairs from the Zeeman splittings σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 2 E’ 1/2 ← 2 A 2 ’ : 15 transitions
14
15000 15200 15400 15600 15800 16000 16200 16400 Wavenumber / cm -1 15000 15200 15400 15600 15800 16000 16200 16400 Wavenumber / cm -1 N 2 O 5 → NO 3 + NO 2 R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975) M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) NO 2⑤ Resolution : 0.2 cm -1 INTENSITY ×5 0 + 950 cm -1 band : ν 1 LIF spectra of 14 NO 3 and 14 NO 2 How about the vibronic bands?
15
NO 2 N 2 O 5 → NO 3 + NO 2 High-resolution LIF spectra 14 NO 3 0 + 950 cm -1 band and 14 NO 2 NO 2 R (2) R (0) R (4) P (2) 0.2 cm -1 Resolution : 0.0007 cm -1
16
N 2 O 5 → NO 3 + NO 2 NO 2 Small signal, large background → difficult to analyze NO 3 signal Resolution : 0.0007 cm -1 High-resolution LIF spectra 14 NO 3 0 + 950 cm -1 band and 14 NO 2
17
15000 15200 15400 15600 15800 16000 16200 16400 Wavenumber / cm -1 15000 15200 15400 15600 15800 16000 16200 16400 Wavenumber / cm -1 NO 2 N 2 O 5 → NO 3 + NO 2 R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975) 0 + 770 cm -1 band : 2ν 4 M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) Resolution : 0.2 cm -1 INTENSITY ×5 LIF spectra of 14 NO 3 and 14 NO 2
18
N 2 O 5 → NO 3 + NO 2 NO 2 0.2 cm -1 Resolution : 0.0007 cm -1 High-resolution LIF spectra 14 NO 3 0 + 770 cm -1 band and 14 NO 2
19
N 2 O 5 → NO 3 + NO 2 0.0246 cm -1 High-resolution LIF spectra 14 NO 3 0 + 770 cm -1 band and 14 NO 2 Resolution : 0.0007 cm -1 Large signal, small background, compared with 0 + 950 cm -1 band Large signal, small background, compared with 0 + 950 cm -1 band
20
0 G 12 G 25 G 37 G 50 G 62 G J’ = 1.5 MJMJ + 1.5 + 0.5 - 0.5 - 1.5 - 0.5 + 0.5 - 0.5 - 1.5 J” = 0.5 + 1.5 π - pump (H // E), ΔM J = 0 Zeeman Splitting at 15872.42 cm -1 line pair J” = 1.5 0.0246 cm -1
21
N 2 O 5 → NO 3 + NO 2 0.0246 cm -1 R (0.5) Q (1.5) High-resolution LIF spectra 14 NO 3 0 + 770 cm -1 band and 14 NO 2 Resolution : 0.0007 cm -1 2 E’ 3/2 2 E’ 1/2 X 2 A 2 ’ ( ʋ ”=0, K” = 0, N” = 1) J’ = 1.5 J’ = 0.5 J” = 0.5 J” = 1.5 0.0246 cm -1 QR R Q QP
22
Summary We have observed high-resolution fluorescence excitation spectra of 14 NO 3 B-X transition. (1) 0-0 band [15070 – 15145 cm -1 ] (2) 0+770 cm -1 band [15872 – 15874 cm -1 ] * (3) 0+950 cm -1 band [16048– 16055 cm -1 ] * (* Not full region.) Rotational assignment is difficult except the transitions from the X 2 A 2 ’ (K” = 0, N” = 1) levels. (0.0248 cm -1 pairs) Unambiguous assignment of these 0.0248 cm -1 pairs is completed from the observed Zeeman splittings. How about 15 NO 3 ? MI14
23
Acknowledgement Prof. Masaru Fukushima (Hiroshima City University) for his LIF spectrum of 15 NO 3. Ms. Kanon Teramoto and Mr. Tsuyoshi Takashino (Undergraduate students, Kobe University) for their help. Thank you for your attention! Prof. Masaaki Baba (Kyoto University) for experimental setup at early stage. How about 15 NO 3 ? MI14
26
Electronic states of NO 3 B 2 E’ A 2 E” X 2A2’X 2A2’ ~ 15100 cm -1 (~ 662 nm) ~ 7000 cm -1 (~ 1430 nm) E” E’ A2’A2’ A2”A2” LUMO SOMO NO 3 …Planer triangle ⇒ D 3h Radical ⇒ Doublet (Gaussian03, RHF/6-31g)
27
Vibrational Assignment Vibrational Assignment 15000 15400 15800 16200 Wavenumber / cm -1 0 + 950 cm -1 band M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012)振動 モー ド 既約 表現 遷移波数 (cm -1 ) X [1] [2] A [3] B ν1ν1 a1’a1’1060780950 ν2ν2 a2”a2”762710 ν3ν3 e’1480 (?)1435 ν4ν4 e’380530~ 385 2ν42ν4 ν1ν1 0 + 770 cm -1 band [1] T. Ishiwata et al., J. Phys. Chem., 87, 1349 (1983) [2] R. R. Friedl et al., J. Phys. Chem., 91, 2721 (1987) [3] T. J. Codd et al., 68th Int. Symp. Mol. Spectrosc., WJ05 (2013) Normal Mode of NO 3 + - - ν 2 A 2 ” ν 1 A 1 ’ ν 3a E’ ν 3b ν 4a E’ ν 4b E’ ν = E’ a 1 ’, a 2 ’, e’ B state Vibrational level Vibronic level 0 - 0 band
28
Complicated structure of the 662 nm band Vib. modeFrequency Anharmonic constant ν 1 (a 1 ’) ν 2 (a 2 ”) ν 3 (e’) ν 4 (e’) 772.73 713.59 1688.12 511.20 – 4.603 – 10.268 0 + 4.785 [Codd et al., 67th OSU meeting, TI01 (2012)] The A state vibrational frequencies in cm -1 X 2A2’X 2A2’ A 2 E” B 2 E’ { 15070 – 15145 cm -1 region: 10 ~ 15 E’-type levels Complicated structure of the 662 nm band: (mainly) vibronic interaction with dark A state?? 7060 cm -1 E” × A 2 ” = E’ 15100 cm -1
29
B 2 E’ : Hund’s coupling case(a) J R P S L Λ Σ z(c) x(a)=y(b) KN J R L S z(c) x(a)=y(b) X 2 A 2 ’(v=0) : Hund’s coupling case(b) good quantum number : Λ, S, Σ, J, P, M J, K good quantum number : N, K, S, J, M J Hund’s Couplig Case Hund’s Couplig Case
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.