Download presentation
Presentation is loading. Please wait.
Published byMyles White Modified over 9 years ago
1
Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 33: November 20, 2013 Crosstalk
2
Today Crosstalk –How arise –Consequences –Magnitude –Avoiding Penn ESE370 Fall2013 -- DeHon 2
3
Capacitance There are capacitors everywhere Already talked about –Wires as capacitors –Capacitance between terminals on transistor Penn ESE370 Fall2013 -- DeHon 3
4
Miller Effect For an inverting gate Capacitance between input and output must swing 2 V high Or…acts as double- sized capacitor Penn ESE370 Fall2013 -- DeHon 4
5
Capacitance Everywhere Potentially a capacitor between any two conductors –On the chip –On the package –On the board All wires –Package pins –PCB traces –Cable wires –Bit lines Penn ESE370 Fall2013 -- DeHon 5
6
Capacitor Dependence Decrease with conductor separation Increase with size Depends on dielectric Penn ESE370 Fall2013 -- DeHon 6
7
Parallel Wires Parallel-plate capacitance between wires Penn ESE370 Fall2013 -- DeHon 7
8
Wire Capacitance Changes in voltage on one wire may couple through capacitance to another Penn ESE370 Fall2013 -- DeHon 8
9
Consequences Qualitative First Penn ESE370 Fall2013 -- DeHon 9
10
Wire step response Step response for isolated wire? Penn ESE370 Fall2013 -- DeHon 10
11
Driven Wire What happens to a driven wire? –Wire switches –Neighbors driven but not switch switch Penn ESE370 Fall2013 -- DeHon 11
12
Driven Wire Can this be a problem? What if victim is: –Clock line –Asynchronous control –Non-clock used in synchronous system Outputs sampled at clock edge Penn ESE370 Fall2013 -- DeHon 12
13
Undriven Wire What happens to undriven wire? Where do we have undriven wires? Penn ESE370 Fall2013 -- DeHon 13
14
Clocked Logic CMOS driven lines Clocked logic Willing to wait to settle Impact is solely on delay –May increase delay of transitions Penn ESE370 Fall2013 -- DeHon 14
15
Magnitude Quantitative Penn ESE370 Fall2013 -- DeHon 15
16
How large is the noise? V 1 transitions from 0 to V? Penn ESE370 Fall2013 -- DeHon 16
17
How large is the noise? V 1 transitions from 0 to V Penn ESE370 Fall2013 -- DeHon 17
18
Noise Magnitude Penn ESE370 Fall2013 -- DeHon 18
19
SPICE C 1 =10pF, C 2 =20pF Penn ESE370 Fall2013 -- DeHon 19
20
Good (?) Capacitance High capacitance to ground plane –Limits node swing from adjacent conductors Penn ESE370 Fall2013 -- DeHon 20
21
Driven Line What happens when victim line is driven? Penn ESE370 Fall2013 -- DeHon 21
22
Driven Line Driven line –Recovers with time constant: R 2 (C 1 +C 2 ) Penn ESE370 Fall2013 -- DeHon 22
23
Spice : R 2 =1K, C 1 =10pF, C 2 =20pF Penn ESE370 Fall2013 -- DeHon 23
24
Magnitude of Noise on Driven Line Magnitude of diversion depends on relative time constants – << 2 – >> 2 – ~= 2 Penn ESE370 Fall2013 -- DeHon 24
25
Magnitude of Noise on Driven Line Magnitude of diversion depends on relative time constants – << 2 full diversion, then recover – ~= 2 – >> 2 Charge capacitor faster than line 1 can change –little noise Penn ESE370 Fall2013 -- DeHon 25
26
Spice: C 1 =1pF, C 2 =2pF Penn ESE370 Fall2013 -- DeHon 26
27
Switching Line with Finite Drive What impact does the presence of the non switching line have on the switching line? –All previous questions were about non-switching –Note R on switching Penn ESE370 Fall2013 -- DeHon 27
28
Simultaneous Transition What happens if lines transition in opposite directions? Penn ESE370 Fall2013 -- DeHon 28
29
Simultaneous Transition What happens if transition in opposite directions? –Must charge C 1 by 2V –Or looks like 2C 1 between wires Penn ESE370 Fall2013 -- DeHon 29
30
Simultaneous Transition What happens if lines transition in same direction? Penn ESE370 Fall2013 -- DeHon 30
31
Simulation V2 switching at ¼ frequency of V1 No crosstalk reference case where no V2 Penn ESE370 Fall2013 -- DeHon 31
32
Victimization Setup Penn ESE370 Fall2013 -- DeHon 32
33
Crosstalk Victim Simulations Penn ESE370 Fall2013 -- DeHon 33
34
Where Arise Penn ESE370 Fall2013 -- DeHon 34
35
Cables and PCB Wires Penn ESE370 Fall2013 -- DeHon 35 Source; http://en.wikipedia.org/wiki/File:Flachbandkabel.jpg
36
Printed Circuit Board Penn ESE370 Fall2013 -- DeHon 36 Source: http://en.wikipedia.org/wiki/File:Testpad.JPG
37
37 Interconnect Cross Section ITRS 2007 Penn ESE370 Fall2013 -- DeHon 37
38
IC Metalization Penn ESE370 Fall2013 -- DeHon 38 Source: http://en.wikipedia.org/wiki/File:Silicon_chip_3d.png
39
Penn ESE370 Fall2013 -- DeHon Standard Cell Area invnand3 All cells uniform height Width of channel determined by routing Cell area Identify the full custom and standard cell regions on 386DX die http://microscope.fsu.edu/chipshots/intel/386dxlarge.html 39
40
Wires Will be capacitively coupled to many adjacent wires of varying degrees Penn ESE370 Fall2013 -- DeHon 40
41
bit lines, word lines Penn ESE370 Fall2013 -- DeHon 41 Source: http://techon.nikkeibp.co.jp/article/HONSHI/20071219/144399/ bitline wordline
42
Addressing Penn ESE370 Fall2013 -- DeHon 42
43
What can we do? How can we reduce? Penn ESE370 Fall2013 -- DeHon 43
44
What can we do? Orthogonal routing layers –Avoid parallel coupling vertically Widen spacing between wires –Particularly critical path wires Limit length two wires run in parallel Separate with power planes Separate with ground/power wires Penn ESE370 Fall2013 -- DeHon 44
45
Idea Capacitance is everywhere Especially between adjacent wires Will get “noise” from crosstalk Clocked and driven wires –Slow down transitions Undriven wires voltage changed Can cause spurious transitions Penn ESE370 Fall2013 -- DeHon 45
46
Admin In lab on Friday –Please read lab handout in advance Project due Tuesday Penn ESE370 Fall2013 -- DeHon 46
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.