Download presentation
Presentation is loading. Please wait.
Published byLionel Walters Modified over 9 years ago
1
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento di Chimica “G. Ciamician”, Università di Bologna G. Buffa G. Buffa IPCF-CNR and Dipartimento di Fisica "E. Fermi", Pisa 10th International HITRAN Conference — 22-24 June, 2008
2
OUTLINES 1) Experimental set-up: The THz spectrometer The THz spectrometer 2) Theoretical calculations: The semiclassical approach The semiclassical approach 1) Experimental details: The THz spectrometer The THz spectrometer 2) Theoretical calculations: The semiclassical approach The semiclassical approach 3) Experiment & Theory: Results Results 3) Experiment & Theory: Results Results
3
1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure 1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure
4
FREQUENCY RANGE covered @ LMSB (2) 50-600 GHz (from fundamental to the 6th harmonic) + 600-800 GHz (8th harmonic) + 600-800 GHz (8th harmonic) (3) 1.0-1.2 THz (9th harmonic) + 1.33-1.6 THz (12th harmonic) + 1.33-1.6 THz (12th harmonic) (1) 8-120 GHz (wave-guide Stark cell – P band) (3) 1.0-1.2 THz (9th harmonic) + 1.33-1.6 THz (12th harmonic) + 1.33-1.6 THz (12th harmonic)
5
BLOCK DIAGRAM of the 1.0-1-6 THz SPECTROMETER MULTIPLIER SYNTH 10 kHz-1 GHz MULT fSfS nfSnfS MIX MULT SYNCR ref: 20 MHz RF OSCILL 3.7- 7.6 GHz f RF 20 MHz 73 MHz |f G - mf RF | GUNN P. SUPPLY and SYNCR ref: 73 MHz |f RF - nf S | HP8642A SYNTH MIX corr fGfG Ge DETECTOR PREAMPL 10 MHz freq. standard ref GUNN DIODES CELL FUNCTION GENERATOR 300 Hz CHOPPER LOCK-IN AMPLIFIER FREQUENCY MODULATION TECHNIQUE 2x frequency modualtion
6
BLOCK DIAGRAM of the 1.0-1-6 THz SPECTROMETER MULTIPLIER SYNTH 10 kHz-1 GHz MULT fSfS nfSnfS MIX MULT SYNCR ref: 20 MHz RF OSCILL 3.7- 7.6 GHz f RF 20 MHz 73 MHz |f G - mf RF | GUNN P. SUPPLY and SYNCR ref: 73 MHz |f RF - nf S | HP8642A SYNTH MIX corr fGfG Ge DETECTOR PREAMPL 10 MHz freq. standard ref GUNN DIODES CELL FUNCTION GENERATOR 300 Hz CHOPPER LOCK-IN AMPLIFIER AMPLITUDE MODULATION TECHNIQUE chopper frequency revolution
7
(3) EXPERIMENTAL SET-UP in the THz REGION Quartz cell (1cm long)THz scource (gunn + multiplier) Chopper Bolometer The 1.0-1.6 THz SPECTROMETER
8
(3) EXPERIMENTAL SET-UP in the THz REGION The 1.0-1.2 THz SPECTROMETER THz scource Cell
9
1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure 1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure
10
AMPLITUDE MODULATION TECHNIQUE Natural line profile Lambert-Beer law I = I 0 exp[ ( - 0 )L]
11
LINE SHAPE ANALYSIS To retrieve COLLISIONAL HALF-WIDTH L : by fitting the observed line profiles – natural line profiles - directly to the chosen line profile model (Voigt profile, Galatry profile, Speed Dependent Voigt profile, … …) Residuals: Residuals: Obs. – Calc.
12
SOURCE MODULATION TECHNIQUE FREQUENCY MODULATION (sine wave): (t) = ( - 0 ) + cos m t (t) = ( - 0 ) + cos m t = modulation depth = modulation depth m = modulation frequency K(x, y, z) = Voigt, Galatry or SP-Voigt or … function Line profile expanded in a cosine Fourier series. 2nd harmonic detection: 2nd harmonic detection: a 2 ( ) = 2/ K(x,y,z) cos 2 d a 2 ( ) = 2/ K(x,y,z) cos 2 d 0 Validity: Absorption 6% I = I 0 [1- ( - 0 )L]
13
LINE SHAPE ANALYSIS COLLISIONAL HALF-WIDTH L : by fitting the observed line profiles to a model that explicitly accounts for frequency modulation [Cazzoli & Dore JMS 141, 49 (1990); Dore JMS 221, 93 (2003)]. Residuals: Residuals: Obs. – Calc.
14
1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure 1) Experimental details: The THz spectrometer The THz spectrometer - set up - set up - techniques - techniques - procedure - procedure
15
LINE SHAPE ANALYSIS: Which line profile model? Voigt profile Galatry profile The 301.8 GHz line of O 3 broadened by N 2 LINE SHAPE ANALYSIS: Which line profile model?
16
Galatry vs Speed-dependent Voigt profile
17
RETRIEVAL PARAMETERS PRESSURE BROADENING COEFFICIENT : PRESSURE BROADENING COEFFICIENT : linear fit of L against P by a weighted linear fit of L against P perturb 0000 L = 0 + perturb P perturb Lorentzian halfwidth Broadening due to absorber
18
RETRIEVAL PARAMETERS PRESSURE SHIFT COEFFICIENT s : PRESSURE SHIFT COEFFICIENT s : linear fit of against P by a weighted linear fit of against P = 0 + s perturb P perturb = 0 + s perturb P perturb Transition frequency Frequency at P pertub = 0 s 0
19
2) Theoretical calculations: The semiclassical approach The semiclassical approach 2) Theoretical calculations: The semiclassical approach The semiclassical approach
20
THEORETICAL DETAILS COLLISIONAL RELAXATION EFFICIENCY FUNCTION P COLLISIONAL RELAXATION described within the IMPACT APPROXIMATION by the EFFICIENCY FUNCTION P. P For a line i f P = 1 - S = scattering matrix, H 0 = Hamiltonian of internal degrees, V = collisional interaction, O = time ordering operator. SEMICLASSICAL APPROXIMATIONb SEMICLASSICAL APPROXIMATION (impact parameter b, relative velocity v, internal state of perturber r): P = P(b,v,r) P = P(b,v,r). linewidth lineshift s P The linewidth and lineshift s : real and imaginary parts of P: r = population of level r, f(v) = Maxwellian velocity distribution, n = perturber density.
21
3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: detailed comparison detailed comparison 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: detailed comparison detailed comparison
22
J = 3 1,2 - 3 0,3 * (1.097 THz) J = 3 1,2 - 3 0,3 * (1.097 THz) J = 1 1,1 - 0 0,0 (1.113 THz) J = 1 1,1 - 0 0,0 (1.113 THz) J = 7 2,5 - 8 1,8 (1.147 THz) J = 7 2,5 - 8 1,8 (1.147 THz) J = 3 1,2 - 2 2,1 * (1.153 THz) J = 3 1,2 - 2 2,1 * (1.153 THz) J = 6 3,4 - 5 4,1 * (1.158 THz) J = 6 3,4 - 5 4,1 * (1.158 THz) J = 3 2,1 - 3 1,2 * (1.163 THz) J = 3 2,1 - 3 1,2 * (1.163 THz) J = 8 5,4 - 7 6,1 (1.168 THz) J = 8 5,4 - 7 6,1 (1.168 THz) J = 7 4,4 - 6 5,1 (1.173 THz) J = 7 4,4 - 6 5,1 (1.173 THz) J = 8 5,3 - 7 6,2 (1.191 THz) J = 8 5,3 - 7 6,2 (1.191 THz) J = 6 3,3 - 5 4,2 (1.542 THz) J = 6 3,3 - 5 4,2 (1.542 THz) H 2 O: THz pure rotational lines investigated Self-broad: amplitude modulation N 2 - & O 2 -broad frequency modulation frequency modulation Self-broad: amplitude modulation N 2 - & O 2 -broad frequency modulation frequency modulation Cazzoli et al. JQSRT 2008 Cazzoli et al. JQSRT submitted * Cazzoli et al. JQSRT in preparation
23
H 2 O: THz pure rotational lines investigated J = 3 1,2 - 3 0,3 * (1.097 THz) J = 3 1,2 - 3 0,3 * (1.097 THz) J = 1 1,1 - 0 0,0 (1.113 THz) J = 1 1,1 - 0 0,0 (1.113 THz) J = 7 2,5 - 8 1,8 (1.147 THz) J = 7 2,5 - 8 1,8 (1.147 THz) J = 3 1,2 - 2 2,1 * (1.153 THz) J = 3 1,2 - 2 2,1 * (1.153 THz) J = 6 3,4 - 5 4,1 * (1.158 THz) J = 6 3,4 - 5 4,1 * (1.158 THz) J = 3 2,1 - 3 1,2 * (1.163 THz) J = 3 2,1 - 3 1,2 * (1.163 THz) J = 8 5,4 - 7 6,1 (1.168 THz) J = 8 5,4 - 7 6,1 (1.168 THz) J = 7 4,4 - 6 5,1 (1.173 THz) J = 7 4,4 - 6 5,1 (1.173 THz) J = 8 5,3 - 7 6,2 (1.191 THz) J = 8 5,3 - 7 6,2 (1.191 THz) J = 6 3,3 - 5 4,2 (1.542 THz) J = 6 3,3 - 5 4,2 (1.542 THz) What was available for these lines? What was available for these lines? - experimental values for 1 1,1 - 0 0,0 (N 2 & O 2 ) - calculated and/or extrapolated data for others - experimental values for 1 1,1 - 0 0,0 (N 2 & O 2 ) - calculated and/or extrapolated data for others
24
3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: previous exp data previous exp data 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: previous exp data previous exp data
25
J = 1 1,1 – 0 0,0 transition of H 2 O T = 297 K Cazzoli et al. JQSRT 2008
26
J = 1 1,1 – 0 0,0 transition of H 2 O T = 297 K Cazzoli et al. JQSRT 2008
27
J = 1 1,1 – 0 0,0 transition of H 2 O T = 297 K Cazzoli et al. JQSRT 2008
28
Self N2N2N2N2 O2O2O2O2Air 297 K ExpTheoExpTheoExpTheoExpTheo This work 19.72(46)19.84.38(15)4.22.40(12)2.53.96(13)3.8 Gasster Gasster et al. 3.67(10) 2.99(37) 3.53(8) HITRAN 4.74 3.53(8) J = 1 1,1 – 0 0,0 transition of H 2 O Improvements wrt old measurements Improvements wrt old measurements
29
3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: HITRAN self broad HITRAN self broad 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: HITRAN self broad HITRAN self broad
30
Cazzoli et al. JQSRT submitted
33
Cazzoli et al. JQSRT in preparation
35
ExpTheo This work J = 3 1,2 - 3 0,3 21.98(22)21.54 HITRAN 18.40 This work J = 1 1,1 - 0 0,0 19.72(46)19.8 HITRAN 4.74 This work J = 7 2,5 - 8 1,8 17.96(34)17.93 HITRAN 12.93 This work J = 3 1,2 - 2 2,1 19.57(18)21.22 HITRAN 18.33 This work J = 6 3,4 - 5 4,1 14.97(8)16.27 HITRAN 16.94 This work J = 3 2,1 - 3 1,2 19.23(11)19.80 HITRAN 18.40 This work J = 8 5,4 - 7 6,1 11.12(26)11.33 HITRAN 15.16 This work J = 7 4,4 - 6 5,1 11.98(27)13.03 HITRAN 16.69 This work J = 8 5,3 - 7 6,2 11.66(8)11.88 HITRAN 15.16 This work J = 6 3,3 - 5 4,2 17.56 HITRAN 16.94 What’s the problem? What’s the problem?SELF-broadening
36
COMPARISON : semiclassical calc. (SC) vs HITRAN (assumption*) values * dependence of the broadening parameter on J”
37
COMPARISON : semiclassical calculations (SC) vs HITRAN (exp*) values * IR lines: 600-1000 cm -1 (R. A. Toth)
38
COMPARISON : semiclassical calculations (SC) vs EXP* values * Markov 1994, Cazzoli et al. 2007, Cazzoli et al. 2008
39
Suggestion: Make use of calculated values when no reliable experimental data are available HITRAN ref.# linesMean %error#lines with %err > 25% 3988.310 13643.34 15 37.38 2313.70 3036.80 31239.62 36124.70 504314.77 51133337.5595 52176.61 53324.11 Ref. 51: Averaged values as a function of J”
40
3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: N 2, O 2 & air broad N 2, O 2 & air broad 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: N 2, O 2 & air broad N 2, O 2 & air broad
41
Cazzoli et al. JQSRT submitted
43
ExpTheo This work J = 3 1,2 - 3 0,3 3.970(82)4.00 HITRAN 4.13 This work J = 1 1,1 - 0 0,0 3.96(13)3.8 HITRAN3.53(8) This work J = 7 2,5 - 8 1,8 3.508(20)3.13 HITRAN 3.24 This work J = 3 1,2 - 2 2,1 3.935(75)3.77 HITRAN 3.65 This work J = 6 3,4 - 5 4,1 2.911(60)2.80 HITRAN 2.99 This work J = 3 2,1 - 3 1,2 3.857(57)3.77 HITRAN 3.93 This work J = 8 5,4 - 7 6,1 2.287(66)2.07 HITRAN 2.18 This work J = 7 4,4 - 6 5,1 2.765(34)2.42 HITRAN 2.59 This work J = 8 5,3 - 7 6,2 2.462(24)2.18 HITRAN 2.27 This work J = 6 3,3 - 5 4,2 3.805(72)3.28 HITRAN 3.32 Good agreement! Good agreement!AIR-broadening
44
3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: shift & SD param shift & SD param 3) Experiment & Theory: Results Results - H 2 O: which lines - H 2 O: which lines - theo & exp results: - theo & exp results: shift & SD param shift & SD param
45
Cazzoli et al. JQSRT 2008
46
Cazzoli et al. JQSRT submitted
48
Cazzoli et al. JQSRT in preparation
49
Conclusions 10 pure rotational THz water lines have been experimentally and theoretically been experimentally and theoretically investigated investigated Good agreement between experiment and SC calculations and SC calculations Update for HITRAN self broadening parameters is suggested parameters is suggested Rather accurate experimental results have been obtained have been obtained
50
Thank you for your attention!
52
temperature exponent n Least-square fit: ln(X/X 0 ) = n ln(T 0 /T) TEMPERATURE DEPENDENCE TEMPERATURE DEPENDENCE
53
Laboratory of Millimetre-wave Spectroscopy of Bologna PRAHA 2006 temperature exponent n Least-square fit: ln(X/X 0 ) = n ln(T 0 /T)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.