Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Future of Time-of-flight Mass Spectrometry

Similar presentations


Presentation on theme: "The Future of Time-of-flight Mass Spectrometry"— Presentation transcript:

1 The Future of Time-of-flight Mass Spectrometry
Marvin Vestal Applied Biosystems Framingham, MA

2 A Brief History of Time (of flight) with apologies to Stephen Hawking
1946 W.E Stephens, Phys. Rev. 69,641 “Advances in electronics seem to make practical a type of mass spectrometer in which microsecond pulses of ions are selected every millisecond from an ordinary low-voltage ion source. In travelling down the vacuum tube, ions of different M/e have different velocities and consequently separate into groups spread out in space. … This type of mass spectrometer should offer many advantages over present types. The response time should be limited only by the repetition rate (milliseconds)… Magnets and stabilization equipment would be eliminated. Resolution would not be limited by smallness of slits or alignment. Such a mass spectrometer should be well suited for composition control, rapid analysis, and portable use.”

3 Brief History of Time (of flight)
1948 Cameron & Eggers, Rev. Sci. Instr. 19, 605. First working TOF 1953 Wiley & McLaren, Rev. Sci. Instr. 26, 1150 First practical TOF. Energy & Time Lag Focusing. 1959 Gohlke, Anal. Chem. 31, 535 GC-TOF 1963 Vestal & Wharhaftig, ASMS, 358. Coincidence TOF, first ion counting TDC 1973 Mamyrin et al, Sov. Phys. JETP 37, 45. Reflectron, higher resolution 1974 Macfarlane et al, Biochem. Biophys. Res. Comm. 60, 616 252Cf Plasma desorption. Proteins Fly!!!!

4 Brief History of Time (of flight)
1988 Karas & Hillenkamp, Anal. Chem. 60, 2299. MALDI - Really big proteins fly!!! 1991 Dodenov et al, 12th Int. MS Conf. O-TOF - Electrospray works with TOF 1993 Kaufman, Spengler & Lutzenkirchen, RCM 7, 902. Post-source dcay MALDI 1994 Brown & Lennon, Sunriver, p63. Delayed extraction MALDI - Makes MALDI-TOF routine 1996 Morris et al, RCM 10, 889. Q-TOF 2001 TOF-TOF

5 Today’s Instruments Ionization Techniques TOF Analyzers
Electrospray o-TOF Qq-o-TOF MALDI linear TOF reflector TOF TOF-TOF Trap-TOF

6 Why TOF? Speed Efficiency (Sensitivity) Dynamic Range Resolving Power
Mass Accuracy Mass Range Simplicity Competitive in All Respects with Unmatched Speed

7 Speed Matters! Particularly with MALDI
More Samples - Higher Throughput More Measurements/Sample Better data - Precision of mass and intensity Increased dynamic range

8 MALDI-TOF yesterday, today, and tomorrow
then now future Laser Rate (hz) ,000 Acq. Time/Spect.(sec) Spectra/day ,000 1,000,000* *If we can process and interpret the results Applications Better sample utilization (>100,000 shots/spot) Interface with separations Molecular scanner Tissue Imaging 1 micron resolution =10,000 pixels

9 50 Laser shots in 0.25 sec on 125 femtomoles of trypic digest

10 E Coli beta-galactosidase, MW 116,483.9
16/20 matched, MOWSE Score 3e14, 23% sequence coverage MTMITDSLAV VLQRRDWENP GVTQLNRLAA HPPFASWRNS EEARTDRPSQ QLRSLNGEWR FAWFPAPEAV PESWLECDLP EADTVVVPSN WQMHGYDAPI YTNVTYPITV NPPFVPTENP TGCYSLTFNV DESWLQEGQT RIIFDGVNSA FHLWCNGRWV GYGQDSRLPS EFDLSAFLRA GENRLAVMVL RWSDGSYLED QDMWRMSGIF RDVSLLHKPT TQISDFHVAT RFNDDFSRAV LEAEVQMCGE LRDYLRVTVS LWQGETQVAS GTAPFGGEII DERGGYADRV TLRLNVENPK LWSAEIPNLY RAVVELHTAD GTLIEAEACD VGFREVRIEN GLLLLNGKPL LIRGVNRHEH HPLHGQVMDE QTMVQDILLM KQNNFNAVRC SHYPNHPLWY TLCDRYGLYV VDEANIETHG MVPMNRLTDD PRWLPAMSER VTRMVQRDRN HPSVIIWSLG NESGHGANHD ALYRWIKSVD PSRPVQYEGG GADTTATDII CPMYARVDED QPFAVPKWS IKKWLSLPGE TRPLILCEYA HAMGNSLGGF AKYWQAFRQY PRLWGGFVWD WVDQSLIKYD ENGNPWSAYG GDFGDTPNDR QFCMNGLVFA DRTPHPALTE AKHQQQFFQF RLSGQTIEVT SEYLFRHSDN ELLHWMVALD GPKPLASGEVP LDVAPQGKQL IELPELPQPE SAGQLWLTVR VVQPNATAWS EAGHISAWQQ WRLAENLSVT LPAASHAIPH LTTSEMDFCI ELGNKRWQFN RQSGFLSQMW IGDKKQLLTP LRDQFTRAPL DNDIGVSEAT RIDPNAWVER WKAAGHYQAE AALLQCTADT LADAVLITTA HAWQHQGKTL FISRKTYRID GSGQMAITVD VEVASDTPPHP ARIGLNCQLA QVAERVNWLG LGPQENYPDR LTAACFDRWD LPLSDMYTPY VFPSENGLRC GTRELNYGPH QWRGDFQFNI SRYSQQQLME TSHRHLLHAE EGTWLNIDGF HMGIGGDDSW SPSVSAEFQL SAGRYHYQLV WCQK

11 1000 Laser shots(5 seconds)

12 10,000 laser shots, increased gain Low masses suppressed (50 seconds)

13 10,000 laser shots Focused at low mass (50 seconds)
VTLR ? EVR

14 Summary of Database Searching Results
1000 Laser Shots, 20 ppm window m/z No. No Match Seq.Cov. Mean Error Data Tol. S/N Sub. Match % % ppm ppm Total

15 Peaks detected down to S/N =3 52/196 matched
M/z , 1000 laser shots Peaks detected down to S/N =3 52/196 matched Number of Peptides Matched Error (ppm)

16 E Coli beta-galactosidase, MW 116,483.9
50 shots shots high mass low mass MTMITDSLAV VLQRRDWENP GVTQLNRLAA HPPFASWRNS EEARTDRPSQ QLRSLNGEWR FAWFPAPEAV PESWLECDLP EADTVVVPSN WQMHGYDAPI YTNVTYPITV NPPFVPTENP TGCYSLTFNV DESWLQEGQT RIIFDGVNSA FHLWCNGRWV GYGQDSRLPS EFDLSAFLRA GENRLAVMVL RWSDGSYLED QDMWRMSGIF RDVSLLHKPT TQISDFHVAT RFNDDFSRAV LEAEVQMCGE LRDYLRVTVS LWQGETQVAS GTAPFGGEII DERGGYADRV TLRLNVENPK LWSAEIPNLY RAVVELHTAD GTLIEAEACD VGFREVRIEN GLLLLNGKPL LIRGVNRHEH HPLHGQVMDE QTMVQDILLM KQNNFNAVRC SHYPNHPLWY TLCDRYGLYV VDEANIETHG MVPMNRLTDD PRWLPAMSER VTRMVQRDRN HPSVIIWSLG NESGHGANHD ALYRWIKSVD PSRPVQYEGG GADTTATDII CPMYARVDED QPFAVPKWS IKKWLSLPGE TRPLILCEYA HAMGNSLGGF AKYWQAFRQY PRLWGGFVWD WVDQSLIKYD ENGNPWSAYG GDFGDTPNDR QFCMNGLVFA DRTPHPALTE AKHQQQFFQF RLSGQTIEVT SEYLFRHSDN ELLHWMVALD GPKPLASGEVP LDVAPQGKQL IELPELPQPE SAGQLWLTVR VVQPNATAWS EAGHISAWQQ WRLAENLSVT LPAASHAIPH LTTSEMDFCI ELGNKRWQFN RQSGFLSQMW IGDKKQLLTP LRDQFTRAPL DNDIGVSEAT RIDPNAWVER WKAAGHYQAE AALLQCTADT LADAVLITTA HAWQHQGKTL FISRKTYRID GSGQMAITVD VEVASDTPPHP ARIGLNCQLA QVAERVNWLG LGPQENYPDR LTAACFDRWD LPLSDMYTPY VFPSENGLRC GTRELNYGPH QWRGDFQFNI SRYSQQQLME TSHRHLLHAE EGTWLNIDGF HMGIGGDDSW SPSVSAEFQL SAGRYHYQLV WCQK

17 Missing Peptides MH+ WK IENGLLLLNGKPLLIR CSHYPNHPLWYTLCDR NHPSVIIWSLGNESGHGANHDALYR DRNHPSVIIWSLGNESGHGANHDALYR

18 1776

19 IENGLLLLNGKPLLIR Sequence expected
IENGLLLLDGKPLLIR Major component, labeled IEDGLLLLDGKPLLIR Minor component

20 CSHYPNHPLWYTLCDR b15-2 S

21 DRNHPSVIIWSLGNDSGHGANHDALYR E MH + = 3001.44
b23 b14 y24 b21

22 Summary of Results 99.8 % of Sequence Covered (1022 of 1024)
AA at position 462 is D not E Intact disulfide bond at Deamidation of NG at positions 340 and 346 Discussed by N. E.Robinson PNAS 2002, 99,5283 Dynamic range>1000 and resolving power>10,000 required to obtain good coverage Results required < 5 min. acquisition time on 125 fmoles loaded (51,000 laser hz)

23 What will the future bring
Laser rates to 10 khz will be routine within two years A major challenge is developing automated data acquisition, processing, and interpretation systems that can operate continuously at rates in the range of finished spectra/sec. Applications to protein and peptide samples distributed on surfaces become practical 10,000 discrete spots/sample plate Multi-channel LC interfaced to single MALDI-TOF Molecular scanner for 1- and 2-D gels Direct tissue imaging


Download ppt "The Future of Time-of-flight Mass Spectrometry"

Similar presentations


Ads by Google