Download presentation
Presentation is loading. Please wait.
Published byRoss Morrison Modified over 9 years ago
1
Multiply. 1) (x 2 – 4)(x + 3) 2) (2x – 5y)(x + 2y) 3) (3p – 2q) 2 4) (x + 2)(x – 2)(x – 3)
2
Objective: Students will be able to demonstrate their understanding of factoring special cases by 1) correctly solving at least 6 of the 10 “you try” problems, 2) scoring at least a 2 on their exit slip, and 3) writing a letter to a sick classmate.
3
Standard 11.0 Students apply basic factoring techniques to second- and simple third-degree polynomials. These techniques include finding a common factor for all terms in a polynomial, recognizing the difference of two squares, and recognizing perfect squares of binomials.
4
VOCABULARY/RULES 1. Perfect square – the product of a number and itself. Ex: 225 is a perfect square because it is the product of 15 × 15. 2. Perfect Square Trinomial – a trinomial which when factored has the form: (a + b) 2 = (a + b)(a + b) or (a – b) 2 = (a – b)(a – b). a) Is the first term a perfect square? b) Is the last term a perfect square? c) Is the middle term twice the product of the first and last term? 3. Difference of Squares – two perfect squares separated by a subtraction sign. a 2 – b 2 = (a +b)(a – b)
5
Factor x 2 + 10x + 25
6
Factor x 2 – 25
7
Subtracting Polynomials Factor 1. 4x 2 - 4x + 1 2. 4x 2 – 12x + 36 3. x 2 + 2x + 1 4.16x 2 + 20x + 25 5. 49x 2 – 14x + 1 6. 4x 2 + 49 7. x 2 + 100 8. x 2 – 16 9. 121 – x 2 10. 25x 2 – 100
8
Subtracting Polynomials Factor 1. x 2 - 9 2. 25x 2 + 20x + 4 1. x 2 - 6x + 9 2. 9x 2 - 225
9
Olivia is sick with flu but does not want to fall behind on today’s lecture. Task: Write Olivia a letter and explain how to factor the following problems: 4x 2 – 49 and 9x 2 - 12x + 4. Provide her with all the information to be successful on her homework. (YOU MAY NOT USE YOUR NOTES OR TALK TO YOUR PARTNER!)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.