Download presentation
Presentation is loading. Please wait.
Published byBertram Wiggins Modified over 9 years ago
1
Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920 Amanda L. Steber, Justin L. Neill, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, VA 22904
2
Recent work in C-H···π Interactions ? ? CHClF 2 ···HCCH a CH 2 F 2 ···HCCH CH 2 ClF···HCCH a Elmuti, L. F.; Peebles, R. A.; Peebles, S. A.; Steber, A. L.; Neill, J. L.; Pate, B. H. J. Phys. Chem. Chem. Phys. 2011, DOI 10.1039/c1cp20684b 2 Cl F 3.061(38) Å 2.730(6) Å Cl F
3
CH 2 ClF··· HCCH a b initio Structures MP2/6-311++G(2d,2p) level A /MHz5120 B /MHz1625 C /MHz1243 E ZPE /cm -1 0 A /MHz9652 B /MHz1204 C /MHz1078 E ZPE /cm -1 26 a b Chlorine out structure Chlorine in structure b a 3
4
CH 2 ClF ··· HCCH Spectrum Measurement CP-FTMW (University of Virginia) a 7.0-18.0 GHz 350,000 averages 0.75% CH 2 ClF/ 1.0% HCCH diluted in He, P= 2 atm Fit using AABS package from Kisiel b and SPFIT/SPCAT software c Less intense transitions and 13 C isotopologues measured on the Balle-Flygare cavity FTMW (Eastern Illinois University) d, e 1.0% CH 2 ClF/ 1.0% HCCH diluted in He/Ne (17.5%/82.5%) P=2.0-2.5 atm a Brown, G. G.; Dian, B. C.; Douglass, K. O.; Geyer, S. M.; Shipman, S. T.; Pate, B. H. Rev. Sci. Instrum. 2008, 79, 053103 b Kisiel, Z.; Pszczolkowski, L.; Medvedev I.R.; Winnewisser, M.; De Lucia, F. C.; Herbst, C. E. J. Mol. Spec. 2005, 233, 231-243 c Pickett, H. M. J. Mol. Spec. 1991, 148, 371 d Balle, T. J.; Flygare, W. H. Rev. Sci. Instrum. 1981, 52, 33 e Newby, J. J.; Serafin, M. M.; Peebles, R. A.; Peebles, S. A. Phys. Chem. Chem. Phys. 2005, 7, 487 4
5
CH 2 ClF 1 11 ← 2 02 5/2 ← 7/2 S/N ≈ 2800 CH 2 ClF···HCCH 3 03 ← 2 02 9/2 ←7/2 S/N ≈ 250 CH 2 35 ClF···HCCH 3 03 -2 02 CH 2 37 ClF···HCCH 3 22 -2 21 CH 2 ClF···HCCH Spectrum 5
6
CH 2 ClF· · ·HCCH Constants Ab initio Chlorine in CH 2 35 ClF··· H 12 C 12 CH CH 2 37 ClF··· H 12 C 12 CH CH 2 35 ClF··· H 13 C 13 CH CH 2 37 ClF··· H 13 C 13 CH A / MHz51205262.899(14)5139.79(12)5229.361(21)5108.535(24) B / MHz16251546.8071(10)1538.2279(15)1471.2616(11)1462.4085(11) C / MHz12431205.4349(7)1193.6843(10)1157.3986(7)1145.9242(8) χ aa / MHz24.1928.497(5)22.270(7)28.362(8)22.096(8) χ bb / MHz–60.13–65.618(13)–51.496(22)–65.474(21)–51.337(20) χ cc / MHz35.9437.121(8)29.226(14)37.112(13)29.240(12) χ ab / MHz–22.2007 –18.1583–22.2007–18.1583 NaNa –71394643 Δν rms / kHz b –5.55.82.84.5 P cc / uÅ 2 1.5651.7502(4)1.7478(15)1.7461(5)1.7426(5) a number of fitted transitions b Δν rms =√(∑(ν obs -ν calc ) 2 /N) c Blanco, S.; Lesarri. A.; López, J. C.; Alonso, J. L.; Guarnieri, A. J. Mol. Spec. 1995, 174, 397 P cc (CH 2 ClF) = 1.6092(1) uÅ 2 c 6
7
CH 2 ClF···HCCH Structure Inertial Fit “Best” a Ab initio Chlorine in R |||…C / Å 3.605(4)3.476 θ C–|||…C / ° 73.9(9)73.6 θ |||…C–Cl / ° 91.87(27)94.3 R Cl…H / Å 3.207(22)3.138 R |||…H / Å 3.236(6)3.101 θ C–H…||| / ° 101.0(1)101.2 θ C–H…Cl / ° 109.0(1.0)110.1 3.207(22) Å R H…p = 3.236(6) Å q C-H…p = 101.0(1)° 91.87(27)° 73.9(9)° 3.605(4) Å 109.0(10)° 85.2(22)° Cl F a average of the structures produced by fitting (I a, I b, I c ), (I a, I b ), (I a, I c ), and (I b, I c ) in STRFITQ b Δν rms =√(∑(ν obs -ν calc ) 2 /N) 7
8
CH 2 F 2 ···HCCH Predictions A /MHz11211 B /MHz1703 C /MHz1493 E ZPE /cm -1 0 A /MHz8121 B /MHz2067 C /MHz1838 E ZPE /cm -1 64 A /MHz10588 B /MHz1498 C /MHz1323 E ZPE /cm -1 165 MP2/6-311++G(2d,2p) level 8 1 imaginary frequency
9
CH 2 F 2 ···HCCH Spectrum Measurement CP-FTMW at Eastern Illinois University 1.5% CH 2 F 2 / 1.5% HCCH in 5 bar He/Ne, 1.6 atm backing pressure 480 MHz Chirp, 1000 averages 7.0 -15.6 GHz Balle-Flygare FTMW Spectrometer at Eastern Illinois University a a Obenchain, D.A.; Elliott, A.A.; Steber, A.L.; Peebles, R.A.; Peebles, S.A. Wurrey, C.J.; Guirgis, G.A. J. Mol. Spec. 2010, 261, 35-40 9
10
CH 2 F 2 ···HCCH Spectrum CH 2 F 2 ···HCCH CH 2 F 2 ···H 2 O a (CH 2 F 2 ) 3 b (CH 2 F 2 ) 2 c a Caminati,W.; Melendra, S; Rossi, I.; Favero, P. G. J. Am. Chem. Soc. 1999, 121, 10098 b Blanco, S.; Melandri, S.; Ottaviani, P. Caminati, W. J. Am. Chem. Soc. 2007, 129 (9), 2700 c Blanco, S.; López, J. C.; Lesarri, A.; Alonso, J. L. J. Mol. Struct. 2002, 612, 255 10 1000 avg scan 1.5% CH 2 F 2 1.5% HCCH in 5 bar He/Ne
11
From the original 1000 average scan Only a-types were visible in the original scan Potential b-type transitions were found in a 2000 average scan with a smaller chirp (80-120 MHz) 13 CH 2 F 2 ···HCCH Isotopologue 12 CH 2 F 2 ···H 12 C 12 CH 3 03 -2 02 13 CH 2 F 2 ···H 12 C 12 CH 3 03 -2 02 11
12
CH 2 F 2 ···HCCH Constants Parameter Ab initio MP2/ 6-311++G(2d,2p) CH 2 F 2 ···HCCH 13 CH 2 F 2 ···HCCHCH 2 F 2 ···H 13 C 13 CH A /MHz11211 11716.8028(18) 11687.6000(24) 11555.6991(20) B /MHz17041624.083(5)1619.8958(8)1553.561(5) C /MHz14931440.007(5)1436.3245(8)1381.977(5) Δν rms /kHz a -2.182.863.44 NbNb -291229 P aa /uÅ 2 295.0309.5006(14)310.29879(25)323.6311(16) P bb /uÅ 2 43.4241.4554(14)41.55697(25)42.0617(16) P cc /uÅ 2 1.6551.6774(14)1.68365(25)1.6724(16) P cc (CH 2 F 2 ) = 1.6512(1) uÅ 2 c a Δν rms =√(∑(ν obs -ν calc ) 2 /N) b number of fitted transitions c Hirota, E.; Tanaka, T.; Sakakibara, A.; Ohashi, Y.; Morino, Y. J. Mol. Spec. 1970, 34, 222 12
13
CH 2 F 2 ···HCCH Stark Effects Transition10 5 x (Δν/E 2 ) obs.10 5 x (Δν/E 2 ) calc. 2 02 ←1 01 |M|= 0-3.3840-3.4079 2 02 ←1 01 |M|= 12.55222.5175 3 03 ←2 02 |M|= 0-4.4624-4.4315 3 03 ←2 02 |M|= 1-3.6005-3.5966 3 03 ←2 02 |M|= 2-1.0932-1.0918 1 11 ←0 00 |M|= 06.70996.7261 3 13 ←2 12 |M|= 1-2.9271-2.9439 This StudyAb initio μ a /D1.511(3)1.68 μ b /D1.2246(19)1.29 μ total /D 1.9452(26)2.12 c a b 13 μ total (CH 2 F 2 ) = 1.97(2) D a a Lide, D. R. Jr. J. Am. Chem. Soc. 1952, 74 (14) 3548
14
Inertial Fit “Best” a Ab initio Structure R |||···C /Å 3.625(9)3.51 θ C-|||···C /° 70.2(28)66.5 θ |||···C-F /° 80.0(8)83.7 R F···H /Å2.84(6)2.68 R H···||| /Å3.363(14)3.22 R cm /Å4.033(1)3.937 θ C-H···||| /°94.9(3)96.2 θ C-H···F /°105(3)111 θ C-F···H /°104.5(13)99.7 CH 2 F 2 ···HCCH Structure 3.625(9) Å R H···||| = 3.363(14) Å θ C-H…||| = 94.9(3)° 70.2(28)° 80.0(8)° 104.5(13)° 105(3)° 2.84(6) Å a /Åb /Å Substitution-0.90101(11)-0.33033(2) Inertial fit (I a, I c )-0.9264-0.3089 Ab initio structure -0.8788-0.2956 a average of the structures produced by fitting (I a, I b, I c ), (I a, I b ), (I a, I c ), and (I b,I c ) in STRFITQ 14
15
HCCH complex k s /N m -1 E b / kJ mol -1 CH 2 F 2 2.85(3)3.88(6) CH 2 ClF3.46(2)4.75(4) CHClF 2 a 3.7(5) [3.7(5)] b 4.9(5) [5.0(5)] b CHBrF 2 c 1.82(1)2.46(3) Force Constants and Binding Energies 15 a Elmuti, L. F.; Peebles, R. A.; Peebles, S. A.; Steber, A. L.; Neill, J. L.; Pate, B. H. Phys. Chem. Chem. Phys. 2011. DOI 10.1039/c1cp20684b b Strucure refit using a refined CHClF 2 monomer structure. Vincent, M. A.; Hillier, I. H. Phys. Chem. Chem. Phys. 2011, 13, 4388 c Obenchain D. A.; Bills, B. J.; Christenholz, C. L.; Peebles, R. A.; Peebles, S. A.; Neill, J. L.; Pate, B. H. Manuscript in preparation
16
C-H···π Interactions CH 2 F 2 ···HCCHCH 2 ClF···HCCHCHClF 2 ···HCCH a CHBrF 2 ···HCCH R |||-C /Å3.625(9)3.605(4) 3.710(4) [3.676] 3.683(7) R |||-H /Å3.363(14)3.236(1) 2.730(6) [2.655] 2.670(8) θ |||···C-X /˚80.0(8)91.87(27) 88.0(5) [87.7] 91.71(94) R C-C / Å3.468(37)3.487(10) 3.563(16) [3.500] 3.540(14) 16 a Strucure refit using a refined CHClF 2 monomer structure. Vincent, M. A.; Hillier, I. H. Phys. Chem. Chem. Phys. 2011, 13, 4388
17
Distributed Multipole Analysis Up to quadrupole terms considered GDMA 2.2 Anthony Stone a MIN16 Buckingham-Fowler model b,c PROSPE website d,e Electrostatic Interactions 17 Lowest Energy Highest Energy Buckingham- Fowler Model Ab initio MP2/ 6-311++G(2d,2p) a Stone, A. J. J. Chem Theory Comp. 2005, 1, 1128 b Buckingham A. D.; Fowler P. W. J.Chem.Phys. 1983, 79, 6426 c Buckingham A. D.; Fowler P. W. Can.J.Chem. 1985, 63, 2018 d Kisiel Z.; Fowler, P. W.; Legon A.C. J. Chem. Phys. 1990, 93, 3054 e Kisiel Z. MIN16, PROSPE. www.ifpan.edu.pl/~kisiel/prospe.htm E ZPE = 0 cm -1 E ZPE = 34 cm -1 E ZPE = 64 cm -1 E ZPE = 165 cm -1 1 imaginary frequency
18
Electrostatic Interactions Lowest Energy Highest Energy Buckingham- Fowler Model Ab initio MP2/ 6-311++G(2d,2p) 18 E ZPE = 0 cm -1 E ZPE = 13 cm -1 E ZPE = 26 cm -1 E ZPE = 231 cm -1
19
Conclusions Assigned the spectrum of CH 2 ClF···HCCH (4 isotopologues) and CH 2 F 2 ···HCCH (3 isotopologues) Structure fits ○ Similar R C-C distance for analog HCCH complexes Dipole moments of CH 2 F 2 ···HCCH ○ Agree with ab initio to within expected deviation ○ No enhancement of the dipole moment from the measured monomer value Force constants and binding energies ○ Appears that the chlorine containing halomethanes are more strongly bound to acetylene than the other halomethanes studied thus far 19
20
Conclusions Intermolecular Interactions Electrostatic model can be used to predict possible asymmetric structures ○ Preference of the lowest energy structure cannot be determined by only an electrostatic model ○ Orient a Additional studies are still needed to reliably determine the types of intermolecular interactions that are influencing the structures of these complexes 20 a Stone, A. J.; Dullweber, A.; Engkvist, O.; Fraschini, E.; Hodges, M. P.; Meredith, A. W.; Nutt, D. R.; Popelier, P. L. A.; Wales, D. J. 2002, ‘Orient: a program for studying interactions between molecules, version 4.5,’ University of Cambridge, Enquiries to A. J. Stone, ajs1@cam.ac.uk
21
Current Projects 21 CH 2 ClF Vinyl Fluoride CH 2 =CH 2 CO 2 CH 2 F 2
22
Support NSF Research at Undergraduate Institutions CHE-0809387 Professor Kuczkowski for the H 13 C 13 CH sample 22
23
I a, I b, I c a I a, I b a I a, I c a I b, I c a “Best” b Ab initio Structure I R |||…C / Å 3.605(3)3.608(3)3.600(3)3.606(3) 3.605(4)3.476 θ C–|||…C / ° 74.10(5)74.93(5)73.43(5)73.47(5) 73.9(9)73.6 θ |||…C–Cl / ° 91.82(21)91.71(21)92.19(22)91.72(21) 91.87(27)94.3 R Cl…H / Å c 3.210(2)3.232(2)3.198(2)3.190(2) 3.207(22)3.138 R |||…H / Å c 3.237(16)3.240(16)3.229(18)3.238(16) 3.236(6)3.101 θ C–H…||| / ° c 100.9(7) 101.1(7)100.9(7) 101.0(1)101.2 θ C–H…Cl / ° c 108.8(1)107.8(1)109.6(1)109.5(1) 109.0(1.0)110.1 rms / u Å 2 d 0.1070.0490.0470.067 –– CH 2 ClF···HCCH Structure 23
24
CH 2 35 ClF–H 12 C 12 CHCH 2 37 ClF–H 12 C 12 CHCH 2 35 ClF–H 13 C 13 CHCH 2 37 ClF–H 13 C 13 CHAb initio Chlorine in A / MHz5262.899(14)5139.79(12)5229.361(21)5108.535(24) 5120 B / MHz1546.8071(10)1538.2279(15)1471.2616(11)1462.4085(11) 1625 C / MHz1205.4349(7)1193.6843(10)1157.3986(7)1145.9242(8) 1243 J / kHz 3.308(12)3.158(34)3.287(19)3.163(18) – JK / kHz 14.03(8)14.63(12)11.95(11)12.66(14) – K / kHz –402(14)–439(46)–598(22)–583(24) – J / kHz 0.830(15)0.874(25)0.929(15)0.784(17) – aa / MHz 28.497(5)22.270(7)28.362(8)22.096(8) 24.19 bb / MHz –65.618(13)–51.496(22)–65.474(21)–51.337(20) –60.13 cc / MHz 37.121(8)29.226(14)37.112(13)29.240(12) 35.94 ab / MHz –22.2007–18.1583–22.2007–18.1583 –22.2007 P cc / u Å 2 1.7502(4)1.7478(15)1.7461(5)1.7426(5) 1.5646 N cN c 71394643 – rms / kHz 5.55.82.84.5 – CH 2 ClF···HCCH Constants 24
25
CH 2 F 2 ···HCCH Structure I a, I b, I c I a, I b I a, I c I b, I c “Best” Ab initio Structure R |||···C /Å 3.625(2)3.625(7)3.617(12)3.631(11)3.625(9)3.51 θ C-|||···C /° 70.5(38)70.5(36)66(6)74(7)70.2(28)66.5 θ |||···C-F /° 79.9(11) 81.3(19)79.1(16)80.0(8)83.7 R F···H /Å 2.84(11)2.84(1)2.75(16)2.92(19)2.84(6)2.68 R H···||| /Å 3.365(4)3.364(15)3.346(19)3.377(18)3.363(14)3.22 R cm /Å 4.033(18)4.033(9)4.033(17)4.033(15)4.033(1)3.937 θ C-H···||| /° 94.9(5) 95.4(8)94.5(7)94.9(3)96.2 θ C-H···F /° 105(5) 110(7)101(7)105(3)111 θ C-F···H /° 104.7(14)104.7(12)102.4(24)106.1(20)104.5(13)99.7 Rms/ uÅ 2 0.050.0450.0540.062-- 3.59(7) Å R H···||| = 3.63(11) Å θ C-H…||| = 94.9(3)° 70.2(28)° 80.0(8)° 104.5(13)° 105(3)° 2.84(6) Å 25
26
Instruments CH 2 ClF···HCCH CP-FTMW at the University of Virginia CH 2 F 2 ···HCCH CP-FTMW at Eastern Illinois University Balle-Flygare FTMW at Eastern Illinois University Used to measure transitions of both species Weak components of parent species and isotopologues 26
27
CH 2 F 2 ···HCCH CH2F2CHF3 CH2ClFCHClF2CHBrF2 Acetylene k s /N m -1 2.85(3)--3.46(2)3.7(5)1.82(1) E b /kJ mol -1 3.88(6)--4.75(4)4.9(5)2.46(3) Carbonyl Sulfide k s /N m -1 2.1(1) 1.2(1) 3.25(7)--- E b /kJ mol -1 2.1(1) 1.6(1) 3.5(1)--- Carbon Dioxide k s /N m -1 - 1.4(2)---- E b /kJ mol -1 - 1.6(4)---- Water k s /N m -1 7.7---5.3(2)- E b /kJ mol -1 7.5---5.5(2)- 27
28
CH 2 F 2 ···HCCH Constants Parameter ab initio MP2/(6-311++G(2d,2p)) CH 2 F 2 ···HCCH 13 CH 2 F 2 ···HCCHCH 2 F 2 ···H 13 C 13 CH A /MHz 11210.613 11716.8028(18) 11687.6000(24) 11555.6991(20) B /MHz 1703.614 1624.083(5) 1619.8958(8) 1553.561(5) C /MHz 1493.338 1440.007(5) 1436.3245(8) 1381.977(5) Δ J /kHz- 5.22(12) 5.216(26) a 4.819(12) Δ JK /kHz- -33.51(8) -33.51 a -32.74(8) δ J /kHz- 0.8593(32) 0.8593 a 0.774(3) δ K /kHz- 20.2(23) 20.2 a 2.02(24) Δν rms /kHz- 2.18 2.86 3.436 N c - 29 12 29 P aa /uÅ 2 294.9966 309.5006(14) 310.29879(25) 323.6311(16) P bb /uÅ 2 43.4258 41.4554(14) 41.55697(25) 42.0617(16) P cc /uÅ 2 1.6546 1.6774(14) 1.68365(25) 1.6724(16) P cc (CH2F2) = 1.651(1) uÅ 2 28
29
Electrostatic Interactions Relative energy-0.0268668-0.0172967 Dipole- Quadrapole-0.0302364-0.0157568 Quadrapole- Quadrapole0.0024266-0.0020474
30
Electrostatic Interactions Lowest Energy Highest Energy Buckingham- Fowler Model Ab initio MP2/ 6-311++G(2d,2p) 30 E ZPE = 0 cm -1 E ZPE = 13 cm -1 E ZPE = 26 cm -1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.