Download presentation
Presentation is loading. Please wait.
Published byAbigail Wright Modified over 9 years ago
1
1 Blooming Trees for Minimal Perfect Hashing Author: Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci Publisher: GLOBECOM 2008 Presenter: Yu-Ping Chiang Date: 2009/07/21
2
2 Outline Related work Huffman spectral bloom filter Blooming tree Minimal Perfect Hash Function Using naïve blooming tree Using optimized blooming tree and HSBF Experimental result
3
3 Related work – Huffman Spectral Bloom Filter Using Huffman code encode Counting Bloom Filter (CBF) Encode value δ with (δ+1) bits 30010010 0111010000 0 CBF HSBF δ”1s”, and a trailing 0
4
4 B0 B1 B2 B3 0 11110000 121111 11110000 11111100 000 00 1 111 3 items 2 items 1 item item Bit string HASH FUNCTION 3 bits 1 bit index Related work – blooming tree
5
5 Outline Related work Huffman spectral bloom filter Blooming tree Minimal Perfect Hash Function Using naïve blooming tree Using optimized blooming tree and HSBF Experimental result
6
6 MPHF – using NBT B0 B1 B2 B3 0 11010000 1111 111000 101110 00 00 1 1 1 item 2 items 1 item item Bit string HASH FUNCTION 3 bits 1 bit index Popcount is final hash number
7
7 MPHF – using NBT B0 B1 B2 0 11010000 111000 101110 00 00 1 1 1 item 2 items 1 item Step1: Step2: final hash number = popcount item1 item2 item4 item3 hash 001 00 010 10 111 00 111 01 item1 item2 item4 item3 popcount 00 01 10 11 item1item2item3item4 B31111
8
8 MPHF – using OBT and HSBT 0 11010000 010000 001 1 1 item 2 items 1 item 0000 B0 B1 B2 0 11010000 111000 101110 00 00 1 1 1 item 2 items 1 item NBTOBT
9
9 MPHF – using OBT and HSBT 0 11010000 010000 001 1 1 item 2 items 1 item 0000 0 010000 001 1 2 items 1 item 0000 110 100 0 000 OBTOBT with HSBF
10
10 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks item1 item2 item4 item3 Zero blocks 00 01 10 11 item1 item2 item4 item3 hash 001 000 010 100 111 000 111 010 … … 0 010000 001 1 1 item 2 items 1 item 0000 110 100 0 000
11
11 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks item1 item2 item4 item3 Zero blocks 00 01 10 11 item1 item2 item4 item3 hash 001 000 010 100 111 000 111 010 … … 0 010000 001 1 1 item 2 items 1 item 0000 110 100 0 000 Start addr.Prev. elementsPrev. “10”s Y100 Y222 Lookup table : Y1 Y2
12
12 MPHF – using OBT and HSBT Step1: Step2: final hash number = zero blocks item1 item2 item4 item3 Zero blocks 00 01 10 11 item1 item2 item4 item3 hash 001 000 010 100 111 000 111 010 … … 0 010000 001 1 1 item 2 items 1 item 0000 110 100 0 000 Start addr.Prev. elementsPrev. “10”s Y100 Y222 Lookup table : Y1 Y2 0
13
13 Outline Related work Huffman spectral bloom filter Blooming tree Minimal Perfect Hash Function Using naïve blooming tree Using optimized blooming tree and HSBF Experimental result
14
14 Experimental result Our Intel 2.4Ghz Pentium 4 Core 2 Duo processor, 4GB RAM, Linux OS 2.6
15
15 Experimental result BPZ 3.2 Ghz XEON, 1G RAM, Linux 2.6 BL Pentium 4
16
16
17
U U Bloom Filter 17 U U ite m1 ite m2 ite m 3 If present item in U as xxx Item1 can be 001 Item2 can be 010 Item3 can be 110 S S ite m1 ite m 3 There can be at most three items each present with three bits in set S. S can be present as 001 110 000
18
Bloom Filter 18 U U ite m 1 ite m 2 ite m 3 Assume hash function H(x) : H(item 1 ) = 0 H(item 2 ) = 1 H(item 3 ) = 2 U can be present in three bits, No.H(item i ) bit present i S can be present as 101 U U S S ite m1 ite m 3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.