Presentation is loading. Please wait.

Presentation is loading. Please wait.

Device models Mohammad Sharifkhani.

Similar presentations


Presentation on theme: "Device models Mohammad Sharifkhani."— Presentation transcript:

1 Device models Mohammad Sharifkhani

2 A model for manual analysis

3 Current-Voltage Relations The Deep-Submicron Era
-4 V DS (V) 0.5 1 1.5 2 2.5 x 10 I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V Early Saturation Linear Relationship

4 Velocity Saturation u ( m / s ) u = 10 x = 1.5 x (V/µm) 5 sat n c
Constant velocity Constant mobility (slope = µ) x c = 1.5 x (V/µm)

5 Perspective I V Long-channel device V = V Short-channel device V V - V
GS DD Short-channel device V V - V V DSAT GS T DS

6 ID versus VGS linear quadratic quadratic Long Channel Short Channel
0.5 1 1.5 2 2.5 3 4 5 6 x 10 -4 V GS (V) I D (A) 0.5 1 1.5 2 2.5 x 10 -4 V GS (V) I D (A) linear quadratic quadratic Long Channel Short Channel

7 ID versus VDS Resistive Saturation VDS = VGS - VT Long Channel
0.5 1 1.5 2 2.5 3 4 5 6 x 10 -4 V DS (V) I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V Resistive Saturation VDS = VGS - VT -4 V DS (V) 0.5 1 1.5 2 2.5 x 10 I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V Long Channel Short Channel

8 Unified model

9 Unified model Model presented is compact and suitable for hand analysis. Still have to keep in mind the main approximation: that VDSat is constant . When is it going to cause largest errors? When E scales – transistor stacks. But the model still works fairly well.

10 Velocity saturation

11 Velocity saturation Smaller EcL  Smaller VDsat  Saturates quicker

12 Velocity saturation

13 Velocity saturation

14 Velocity saturation

15 Velocity Saturation

16 Output resistance Slope in I-V characteristics caused by:
Channel length modulation Drain-induced barrier lowering (DIBL) Both effects increase the saturation current beyond the saturation point The simulations show approximately linear dependence of Ids on Vds in saturation.

17 Output resistance

18 Output resistance

19 Output resistance

20 Transistor stacks

21 Transistor stacks (Velocity sat.)
NAND Suffers less from VS In NAND VDsat is larger

22 Velocity Saturation How about NAND3? How about PMOS networks?
IDSat = 1/2 of inverter IDSat (instead of 1/3) How about PMOS networks? NOR2 – 1.8x, NOR3 – 2.4x, NOR x What is ECL for PMOS?

23 Alpha power law

24 Alpha power law This is not a physical model Simply empirical:
Can fit (in minimum mean squares sense) to variety of α’s, VTh Need to find one with minimum square error – fitted VTh can be different from physical Can also fit to α = 1 What is VTh?

25 Alpha power law

26 I-V Curves Triode Vel. Sat. Regular sat.

27 I-V curves

28 A PMOS Transistor Assume all variables negative! -2.5 -2 -1.5 -1 -0.5
-0.8 -0.6 -0.4 -0.2 x 10 -4 V DS (V) I D (A) VGS = -1.0V VGS = -1.5V VGS = -2.0V Assume all variables negative! VGS = -2.5V

29 Transistor Model for Manual Analysis

30 The Transistor as a Switch

31 The Transistor as a Switch

32 The Transistor as a Switch

33 MOS capacitance The capacitance of the MOS affects the dynamic behavior of a circuit Speed Caps Proper modeling is needed

34 MOS Capacitance

35 Dynamic Behavior of MOS Transistor

36 The Gate Capacitance x L Polysilicon gate Top view Gate-bulk overlap
d L Polysilicon gate Top view Gate-bulk overlap Source n + Drain W t ox n + Cross section L Gate oxide

37 Gate Cap

38 Gate Capacitance Cut-off Resistive Saturation Most important regions in digital design: saturation and cut-off

39 Diffusion Capacitance
Channel-stop implant N 1 A Side wall Source W N D Bottom x Side wall j Channel L S Substrate N A

40 Junction Capacitance

41 Capacitances in 0.25 mm CMOS process

42 MOS Caps behavior


Download ppt "Device models Mohammad Sharifkhani."

Similar presentations


Ads by Google