Download presentation
Presentation is loading. Please wait.
Published byByron Gibbs Modified over 9 years ago
1
Objectives The student will be able to: 1. State the coordinate of a point on a number line. 2. Graph integers on a number line. 3. Add and subtract integers.
2
RAP Open your textbook to page 31and complete 11, 12, 25, 27, 29, 31, and 33 119 12-50 2510 272 2914 3125 335
3
The Number Line Integers = {…, -2, -1, 0, 1, 2, …} Whole Numbers = {0, 1, 2, …} Natural Numbers = {1, 2, 3, …} -505
4
To GRAPH a set of numbers means to locate and mark the points on the number line. Graph {-1, 0, 2}. Be sure to put the dots on the line - not above or below. 05 -5
5
Name the set of numbers graphed. {-2, -1, 0,... } The darkened arrow means that the graph keeps on going. When you see this, put 3 dots in your set.
6
Examples: Use the number line if necessary. 4 2) (-1) + (-3) = -4 3) 5 + (-7) = -2 1) (-4) + 8 =
7
Addition Rule 1) When the signs are the same, ADD and keep the sign. (-2) + (-4) = -6 2) When the signs are different, SUBTRACT and use the sign of the larger number. (-2) + 4 = 2 2 + (-4) = -2
8
Karaoke Time! Addition Rule: Sung to the tune of “Row, row, row, your boat” Same signs add and keep, different signs subtract, keep the sign of the higher number, then it will be exact! Can your class do different rounds?
9
-1 + 3 = ? 1.-4 2.-2 3.2 4.4 Answer Now
10
-6 + (-3) = ? 1.-9 2.-3 3.3 4.9 Answer Now
11
Your turn Turn to page 43 in your text. –Complete the odd problems. Homework: Workbook p. 15 and 16
12
The additive inverses (or opposites) of two numbers add to equal zero. -3 Proof: 3 + (-3) = 0 We will use the additive inverses for subtraction problems. Example: The additive inverse of 3 is
13
What’s the difference between 7 - 3 and 7 + (-3) ? 7 - 3 = 4 and 7 + (-3) = 4 The only difference is that 7 - 3 is a subtraction problem and 7 + (-3) is an addition problem. “SUBTRACTING IS THE SAME AS ADDING THE OPPOSITE.” (Keep-change-change)
14
When subtracting, change the subtraction to adding the opposite (keep-change-change) and then follow your addition rule. Example #1: - 4 - (-7) - 4 + (+7) Diff. Signs --> Subtract and use larger sign. 3 Example #2: - 3 - 7 - 3 + (-7) Same Signs --> Add and keep the sign. -10
15
11b + (+2b) Same Signs --> Add and keep the sign. 13b Okay, here’s one with a variable! Example #3: 11b - (-2b)
16
Which is equivalent to -12 – (-3)? Answer Now 1.12 + 3 2.-12 + 3 3.-12 - 3 4.12 - 3
17
7 – (-2) = ? Answer Now 1.-9 2.-5 3.5 4.9
18
1) If the problem is addition, follow your addition rule. 2) If the problem is subtraction, change subtraction to adding the opposite ( keep-change-change ) and then follow the addition rule. Review
19
Your turn Turn to page 49 in your text. –Complete the odd numbers. Homework: Workbook p. 17 and 18
20
Absolute Value of a number is the distance from zero. Distance can NEVER be negative! The symbol is |a|, where a is any number.
21
Examples 7 = 7 10 100 10 = -100 = 5 - 8 = -3 = 3
22
|7| – |-2| = ? 1.-9 2.-5 3.5 4.9 Answer Now
23
|-4 – (-3)| = ? Answer Now 1.-1 2.1 3.7 4.Purple
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.