Download presentation
Presentation is loading. Please wait.
Published byRandolph Goodman Modified over 9 years ago
1
Theory Update on Electromagnetic Probes II Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA CATHIE/TECHQM Workshop BNL (Upton, NY), 16.12.09
2
1.) Intro: Probing Strongly Interacting Matter Electromagnetic Probes: penetrating: EM >> R nuc Equilibrium: EM spectral function Im EM (q 0,q; B,T) Information via EM Spectral Function: degrees of freedom (parton vs. hadron) transport properties (EM conductivity, susceptibility) relation to order parameters (chiral symmetry) measure of temperature
3
1.) Introduction 2.) EM Emission + Vector Mesons Thermal Rate and Conductivity Chiral Symmetry Breaking and a 1 Meson in Medium 3.) Dilepton Spectra in A-A Thermal Emission at SPS The RHIC Problem 4.) Conclusions Outline
4
2.1 Thermal Electromagnetic Emission EM Current-Current Correlation Function: e+ e-e+ e- γ Im Π em (M,q) Im Π em (q 0 =q) Thermal Dilepton and Photon Production Rates: Im em ~ [ImD + ImD /10 + ImD /5] Low Mass: -meson dominated
5
2.2 Electric Conductivity pion gas (chiral pert. theory) em / T ~ 0.01 for T ~ 150-200 MeV [Fernandez-Fraile+Gomez-Nicola ’07] quenched lattice QCD em / T ~ 0.35 for T = (1.5-3) T c [Gupta ’04] soft-photon limit
6
Weinberg Sum Rule(s) 2.3 Chiral Symmetry Breaking + Hadron Spectrum Axial-/Vector Correlators pQCD cont. “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] Constituent Quark Mass chiral breaking: |q 2 | ≤ 1 GeV 2 Gellmann-Oakes-Renner: m 2 f 2 = m q ‹0|qq|0› - Condensates fill QCD vacuum:
7
> > B *,a 1,K 1... N, ,K … 2.4 -Meson in Medium: Hadronic Interactions D (M,q; B,T) = [M 2 - m 2 - - B - M ] -1 -Propagator: [Chanfray et al, Herrmann et al, RR et al, Koch et al, Klingl et al, Mosel et al, Eletsky et al, Ruppert et al, Sasaki et al …] = B, M = Selfenergies: Constraints: decays: B,M→ N, scattering: N → N, A, … B / 0 0 0.1 0.7 2.6 [RR,Wambach et al ’99] Meson “Melting” Switch off Baryons
8
2.4.2 Meson in Cold Nuclear Matter: JLab + A → e + e X e+ ee+ e Nuclear Photo-Production: [CLAS/JLab ‘08] [Riek et al ’08] Theoretical Approach: M ee [GeV] Fe - Ti N elementary production amplitude in-medium spectral function + M [GeV] E =1.5-3 GeV
9
2.6 Axialvector in Medium: Dynamical a 1 (1260) + +... = Vacuum: a 1 resonance In Medium: + +... in-medium + propagators broadening of - scattering amplitude [Cabrera,Jido,Roca+RR ’09]
10
3.) Dilepton Spectra in A-A Thermal Dilepton Emission Rate: e+ e-e+ e- Im Π em (M,q; B,T) Thermal Sources: Relevance: - Quark-Gluon Plasma: high mass + temp. qq → e + e , … M > 1.5 GeV, T >T c - Hot + Dense Hadron Gas: M ≤ 1 GeV → e + e , … T ≤ T c - qqqq _ e+ee+e e+ee+e Im Π em ~ Im D
11
3.1 Dilepton Rates: Hadronic vs. QGP dR ee /dM 2 ~ ∫d 3 q f B (q 0 ;T) Im em Hard-Thermal-Loop [Braaten et al ’90] enhanced over Born rate Hadronic and QGP rates “degenerate” around ~T c Quark-Hadron Duality at all M ?! ( degenerate axialvector SF!) [qq→ee] [HTL] -
12
3.2 Dilepton “Excess” Spectra at SPS “average” (T~150MeV) ~ 350-400 MeV (T~T c ) ≈ 600 MeV → m fireball lifetime: FB ~ (6.5±1) fm/c [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08] Thermal Emission Spectrum:
13
3.2.2 NA60 Data vs. In-Medium Dimuon Rates acceptance-corrected data directly reflect thermal rates! M [GeV] [RR,Wambach et al ’99] [van Hees +RR ’07]
14
3.2.3 NA60 Excess Spectra vs. Theory Thermal source does very well Low-mass enhancement very sensitive to medium effects Intermediate-mass: total agrees, decomposition varies [CERN Courier Nov. 2009]
15
3.2.4 NA60 Dimuons: Sensitivity to QGP and T c vary critical and chemical-freezeout temperature (T fo ~ 130 MeV fix) spectral shape robust: “duality” of dilepton rate around “T c ”! intermediate mass (M>1GeV): QGP vs. hadronic depends on T c Intermediate Mass Region “EoS-B” “EoS-C”
16
3.2.5 EM Probes in Central Pb-Au/Pb at SPS consistency of virtual+real photons (same em ) very low-mass di-electrons ↔ (low-energy) photons [Srivastava et al ’05, Liu+RR ‘06] Di-Electrons [CERES/NA45] Photons [WA98] [Turbide et al ’03, van Hees+RR ‘07]
17
3.3 Low-Mass Dileptons at RHIC: PHENIX Successful approach at SPS fails at RHIC Excess concentrated: - at low mass - in central collisions - at low p t (T eff ~ 100 MeV) Inclusive Mass Spectrum Centrality Dependence of Excess
18
3.3.2 Origin of the Low-Mass Excess in PHENIX? - small T eff slope - why not in semi-central? - generic space-time argument: maximal emission around T max ≈ M / 5.5 (for Im em =const) Low mass (M<1GeV): T max < 200MeV Soft QGP Radiation? - “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - therm + DCC → e + e ↔ M~0.3GeV, small p t Disoriented Chiral Condensate (DCC)? [Bjorken et al ’93, Rajagopal+Wilczek ’93] [Z.Huang+X.N.Wang ‘96]
19
3.3.3 Low-Mass Excess from DCC? Dileptons from a DCC-DCC annihilation [Witham+RR ‘08] too small DCC-thermal to be evaluated …
20
3.3.4 Comparison of Thermal Emission Calculations Chiral Reduction + Hydro Hadronic Many-Body + Fireball Decomposition at M=0.5(0.2)GeV: Hadronic LO-QGP NLO-QGP Dusling+Zahed 6 (6) 5.5 (2) 10 (25) RR+van Hees 20 (15) 4 (3) --
21
4.) Conclusions Electromagnetic Probes - versatile tool (spectral fcts., transport, temp., lifetime!) Chiral Symmetry Breaking (Restoration) - chiral partners: - a 1 (degeneracy at T c ) Thermal Dilepton Rates - melting toward T c : quark-hadron duality?! hadron liquid?! Dilepton Spectra - quantitative agreement at SPS - failure at RHIC thus far (QGP not favored; DCC??)
22
2.3.2 Acceptance-Corrected NA60 Spectra more involved at p T >1.5GeV: Drell-Yan, primordial/freezeout , … M [GeV]
23
X.) Example for Comprehensive Analysis: NA60 thermal medium radiating from around T c with melted , well-bound J/ with large collectivity Dileptons Charmonium Flow Charmonium Production
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.