Download presentation
Presentation is loading. Please wait.
Published byTabitha Carson Modified over 9 years ago
1
RULER - Reduced Electromagnetic Transition Strengths and Recommended Upper Limits T. Kibèdi (ANL) F.G. Kondev (ANU) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National UniversityND2010, Jeju Island, Korea, 26-30-Apr-2010
2
Relative strengths Definitions Weisskopf single particle estimates: Tibor Kibèdi, Dep. of Nuclear Physics, Australian National UniversityNSDD 2015, IAEA, 20-24-Apr-2015 isomer exp j
3
Mixed transitions Empirical transition strength Tibor Kibèdi, Dep. of Nuclear Physics, Australian National UniversityNSDD 2015, IAEA, 20-24-Apr-2015 Partial -ray half-life: isomer exp j
4
Current issues with RULER Tibor Kibèdi, Dep. of Nuclear Physics, Australian National UniversityNSDD 2015, IAEA, 20-24-Apr-2015 NSDD/IAEA: 3.2a (Aug-6-2007; T.W. Burrows) Isomer evaluation (ANU/ANL): 4.1c (12-Jun-2014) Problems: Complicated logic Related parameters stored at different places Uncertainty propagation: analytical approach; ad hock, nested branches based on numerical values Modifications ENSDF type: Value, uncertainties (numerical and character) stored together Simplified logic Added functionality: ICC calculated for mixed and pure multipolarities to deduce B( L) and B( ’L’) LaTex output for ADNDT
5
Value = f(X) Uncertainty calculated as: |Df L | = |f(X)-f(DX L )| |Df U | = |f(X)-f(DX L )| Uncertainty propagation Tibor Kibèdi, Dep. of Nuclear Physics, Australian National UniversityNSDD 2015, IAEA, 20-24-Apr-2015 isomer exp j Partial -ray half-life: X X X-DX L X-DX U f(X)
6
Uncertainty propagation Tibor Kibèdi, Dep. of Nuclear Physics, Australian National UniversityNSDD 2015, IAEA, 20-24-Apr-2015 isomer exp j Partial -ray half-life: X X X-DX L X-DX U f(X) Value = stat. mean Uncertainty calculated from distribution of f(x)
7
Uncertainty propagation using Monte Carlo Tibor Kibèdi, Dep. of Nuclear Physics, Australian National UniversityNSDD 2015, IAEA, 20-24-Apr-2015 Probability Density Functions NORMAL (symmetric) Skewed Gaussian (asymmetric) Square (limits; constant prob.) X ≤ 3 : -∞ ≤ X ≤ 3 X ≤ -3 : -∞ ≤ X ≤ -3 but X ≤ +3 : 0 ≤ X ≤ +3 Program library based on NPL report MS 7 (2010 Cox) Part of NS_lib (FORTRAN 90) shared with BrIcc, BrIccMixing, BrIccEmis, NEW Ruler ….
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.