Download presentation
Presentation is loading. Please wait.
Published byTamsyn Sparks Modified over 9 years ago
1
Computing with Quanta for mathematics students Mikio Nakahara Department of Physics & Research Centre for Quantum Computing Kinki University, Japan Financial supports from Kinki Univ., MEXT and JSPS
2
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Quantum Teleportation 6. Simple Quantum Algorithm 7. Shor’s Factorization Algorithm 2
3
Colloquium @ William & Mary I. Introduction: Computing with Physics 3
4
Colloquium @ William & Mary More complicated Example 4
5
Colloquium @ William & Mary Quantum Computing/Information Processing Quantum computation & information processing make use of quantum systems to store and process information. Exponentially fast computation, totally safe cryptosystem, teleporting a quantum state are possible by making use of states & operations which do not exist in the classical world. 5
6
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Quantum Teleportation 6. Simple Quantum Algorithm 7. Shor’s Factorization Algorithm 6
7
2. Computing with Vectors and Matrices 2.1 Qubit Colloquium @ William & Mary 7
8
Qubit |ψ 〉 8
9
Bloch Sphere: S 3 → S 2 Colloquium @ William & Mary π 9
10
2.2 Two-Qubit System 10
11
Tensor Product Rule Colloquium @ William & Mary 11
12
Entangled state (vector) Colloquium @ William & Mary 12
13
Colloquium @ William & Mary 2.3 Multi-qubit systems 13
14
Colloquium @ William & Mary 2.4 Algorithm = Unitary Matrix 14
15
Unitary Matrices acting on n qubits Colloquium @ William & Mary 15
16
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Quantum Teleportation 6. Simple Quantum Algorithm 7. Shor’s Factorization Algorithm 16
17
3. Brief Introduction to Quantum Theory Colloquium @ William & Mary 17
18
Axioms of Quantum Physics Colloquium @ William & Mary 18
19
Example of a measurement Colloquium @ William & Mary 19
20
Axioms of Quantum Physics (cont’d) Colloquium @ William & Mary 20
21
Qubits & Matrices in Quantum Physics Colloquium @ William & Mary 21
22
Actual Qubits Colloquium @ William & Mary 22 Trapped Ions Molecules (NMR) Neutral Atoms Superconductors
23
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Quantum Teleportation 6. Simple Quantum Algorithm 7. Shor’s Factorization Algorithm 23
24
Colloquium @ William & Mary 4. Quantum Gates, Quantum Circuit and Quantum Computer 24
25
Colloquium @ William & Mary 25
26
Colloquium @ William & Mary 4.2 Quantum Gates 26
27
Colloquium @ William & Mary Hadamard transform 27
28
Colloquium @ William & Mary 28
29
Colloquium @ William & Mary 4.3 Universal Quantum Gates 29
30
Colloquium @ William & Mary 4.4 Quantum Parallelism 30
31
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Quantum Teleportation 6. Simple Quantum Algorithm 7. Shor’s Factorization Algorithm 31
32
5. Quantum Teleportation Colloquium @ William & Mary 32 Unknown Q State Initial State Bob Alice
33
Q Teleportation Circuit Colloquium @ William & Mary 33
34
Colloquium @ William & Mary 34 As a result of encoding, qubits 1 and 2 are entangled. When Alice measures her qubits 1 and 2, she will obtain one of 00, 01, 10, 11. At the same time, Bob’s qubit is fixed to be one of the four states. Alice tells Bob what readout she has got. Upon receiving Alice’s readout, Bob will know how his qubit is different from the original state (error type). Then he applies correcting transformation to his qubit to reproduce the original state. Note that neither Alice nor Bob knows the initial state Example: 11
35
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Quantum Teleportation 6. Simple Quantum Algorithm 7. Shor’s Factorization Algorithm 35
36
Colloquium @ William & Mary 5. Simple Quantum Algorithm - Deutsch’s Algorithm - 36
37
Colloquium @ William & Mary 37
38
Colloquium @ William & Mary 38
39
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Quantum Teleportation 6. Simple Quantum Algorithm 7. Shor’s Factorization Algorithm 39
40
Colloquium @ William & Mary Difficulty of Prime Number Facotrization Factorization of N=890208368187479079568319892720916003 03613264603794247032637647625631554961 638351 is difficult. It is easy, in principle, to show the product of p=928101320540413151847590244727697333 8969 and q =9591715349237194999547 050068718930514279 is N. This fact is used in RSA (Rivest-Shamir- Adleman) cryptosystem. 40
41
Colloquium @ William & Mary Shor’s Factorization algorithm 41
42
Colloquium @ William & Mary Realization using NMR (15=3×5) L. M. K. Vandersypen et al (Nature 2001) 42
43
Colloquium @ William & Mary NMR molecule and pulse sequence ( (~300 pulses~ 300 gates) perfluorobutadienyl iron complex with the two 13C-labelled inner carbons 43
44
Colloquium @ William & Mary 44
45
Colloquium @ William & Mary Foolproof realization is discouraging … ? Vartiainen, Niskanen, Nakahara, Salomaa (2004) Foolproof implementation of factorization 21=3 X 7 with Shor’s algorithm requires at least 22 qubits and approx. 82,000 steps! 45
46
Colloquium @ William & Mary Summary Quantum information is an emerging discipline in which information is stored and processed in a quantum-mechanical system. Quantum information and computation are interesting field to study. (Job opportunities at industry/academia/military). It is a new branch of science and technology covering physics, mathematics, information science, chemistry and more. Thank you very much for your attention! 46
47
Colloquium @ William & Mary 47
48
4. 量子暗号鍵配布 三省堂サイエンスカフェ 2009 年 6 月 48
49
量子暗号鍵配布 1 三省堂サイエンスカフェ 2009 年 6 月 49
50
量子暗号鍵配布 2 三省堂サイエンスカフェ 2009 年 6 月 50
51
量子暗号鍵配布 3 三省堂サイエンスカフェ 2009 年 6 月 51
52
量子暗号鍵配布 4 三省堂サイエンスカフェ 2009 年 6 月 52 イブがいなければ、 4N の量子ビットのうち、平均し て 2N 個は正しく伝わる。
53
イブの攻撃 三省堂サイエンスカフェ 2009 年 6 月 53 2N 個の正しく送受された量子ビットのうち、その半 分の N 個を比べる。もしイブが盗聴すると、その中 のいくつか (25 %) は間違って送受され、イブの存在 が明らかになる。
54
Colloquium @ William & Mary Table of Contents 1. Introduction: Computing with Physics 2. Computing with Vectors and Matrices 3. Brief Introduction to Quantum Theory 4. Quantum Gates, Quantum Circuits and Quantum Computer 5. Simple Quantum Algorithm 6. Shor’s Factorization Algorithm 7. Time-Optimal Implementation of SU(4) Gate 54
55
Colloquium @ William & Mary 55 7. Time-Optimal Implementation of SU(4) Gate Barenco et al’s theorem does not claim any optimality of gate implementation. Quantum computing must be done as quick as possible to avoid decoherence (decay of a quantum state due to interaction with the environment). Shortest execution time is required.
56
Colloquium @ William & Mary 56 7.1 Computational path in U(2 n )
57
Colloquium @ William & Mary 57 Map of Kyoto
58
Colloquium @ William & Mary 58 7.2 Optimization of 2-qubit gates
59
Colloquium @ William & Mary 59 NMR Hamiltonian
60
Colloquium @ William & Mary 60 Time-Optimal Path in SU(4)
61
Colloquium @ William & Mary 61 Cartan Decomposition of SU(4) Cartan Decomposition of SU(4)
62
Colloquium @ William & Mary 62 How to find the Cartan Decomposition
63
Colloquium @ William & Mary 63
64
Colloquium @ William & Mary 64 Example: CNOT gate
65
Colloquium @ William & Mary 65
66
奈良女子大学セミナー 28 Jan. 2005 66 6. Warp-Drive を用いた量子アルゴリズ ムの加速 (quant-ph/0411153)
67
奈良女子大学セミナー 28 Jan. 2005 67
68
奈良女子大学セミナー 28 Jan. 2005 68
69
奈良女子大学セミナー 28 Jan. 2005 69 7. 実験結果 Carbon-13 で置換したクロロフォルム qubit 1 = 13 C, qubit 2 = H 初期状態 出力状態 Qubit 1Qubit 2
70
奈良女子大学セミナー 28 Jan. 2005 70 Field Gradient 法による NMR スペクトル 10 パルス 4 パルス, 1/J 1/2J によるスペクトルの 改善
71
奈良女子大学セミナー 28 Jan. 2005 71 8. Summary I: Cartan 分解
72
奈良女子大学セミナー 28 Jan. 2005 72 Summary II: Warp-Drive
73
Colloquium @ William & Mary Power of Entanglement 73
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.