Presentation is loading. Please wait.

Presentation is loading. Please wait.

On the efficient numerical simulation of kinetic theory models of complex fluids and flows Francisco (Paco) Chinesta & Amine Ammar LMSP UMR CNRS – ENSAM.

Similar presentations


Presentation on theme: "On the efficient numerical simulation of kinetic theory models of complex fluids and flows Francisco (Paco) Chinesta & Amine Ammar LMSP UMR CNRS – ENSAM."— Presentation transcript:

1 On the efficient numerical simulation of kinetic theory models of complex fluids and flows Francisco (Paco) Chinesta & Amine Ammar LMSP UMR CNRS – ENSAM PARIS, France PARIS, France francisco.chinesta@paris.ensam.fr Laboratoire de Rhéologie GRENOBLE, France GRENOBLE, France In collaboration with: R. Keunings Polymer solutions and melts M. Laso LCP M. Mackley & A. MaSuspensions of CNT

2 r1r1 r2r2 r N+1 q1q1 q2q2 qNqN R Molecular dynamics Brownian dynamics Kinetic theory: Fokker-Planck Eq. Deterministic, Stochastic & BCF solvers Constitutive Eq. The different scales: The different scales:

3 General Micro-Macro approach

4 Solving the deterministic Fokker-Planck equation New efficient solvers for: I.Reducing the simulation time of grid discretizations. II.Computing multidimensional solutions where grid methods don’t run.

5 I. Reducing the simulation time The idea … Model: PDE + Karhunen-Loève decomposition

6 1. FENE Model 300.000 FEM dof ~10 dof ~10 functions (1D, 2D or 3D) 3D 1D

7 Larson & Ottinger (Macromolecules, 1991) 2. Non-Linear Models: Doi LCP With only 6 d.o.f. !!

8 It is time for dreaming! For N springs, the model is defined in a 3N+3+1 dimensional space !! ~ 10 approximation functions are enough r1r1 r2r2 r N+1 q1q1 q2q2 qNqN II. Computing multidimensional solutions

9 BUT How defining those high-dimensional functions ? Natural answer: with a nodal description 1D 10 nodes = 10 function values

10 1D 2D >1000D r1r1 r2r2 r N+1 q1q1 q2q2 qNqN 80D 10 dof 10x10 dof 10 80 dof No function can be defined in a such space from a computational point of view !! F.E.M. 10 80 ~ presumed number of elementary particles in the universe !! ~ presumed number of elementary particles in the universe !!

11 The idea … Model: PDE FEM GRID Computing multidimensional solutions

12 q1q1 F G q2q2 Solution EF q1q1 q2q2  q1q1 q2q2 1. MBS-FENE

13 q1q1 F G q2q2 Solution EF q1q1 q2q2 

14 q1q1 F G q2q2 q1q1 q2q2 

15 q1q1 F G q2q2 q1q1 q2q2 

16 q1q1 F G q2q2 q1q1 q2q2 

17 q1q1 F G q2q2 q1q1 q2q2 

18 q1q1 F G q2q2 q1q1 q2q2 

19 q1q1 F G q2q2 q1q1 q2q2 

20 q1q1 F G q2q2 q1q1 q2q2 

21 q1q1 F G q2q2 q1q1 q2q2 

22 q1q1 F G q2q2 q1q1 q2q2 

23 q1q1 q2q2 q9q9 80 9 ~ 10 16 FEM dof 80x9 RM dof 10 40 FEM dof 100.000 RM dof 1D/9D 2D/10D

24 2. Complex Flows Example: Flow involving short fiber suspensions Kinematics:FEM-DVESS

25 s = 0 s = 1 Doi-Edwards Model Ottinger Model: double reptation, CCR, chain stretching, … 3. Entangled polymer models based on reptation motion

26 Ongoing works : (I) Stochastic models can be also reduced ! y=1

27 Reduced Brownian Configurations Fields Discretization 1.Solve i=1 and computed the reduced approximation basis 2.Solve for all i>1 the reduced problem: 1000x1000 4x4

28 Ongoing works: (II) Suspensions of CNT: Aggregation/Orientati on model Enhanced modeling: + The associated Fokker-Planck equation

29 Perspectives Enhanced kinetic model for CNT suspensions taking into account orientation and aggregation effects: FP & BD simulations. Collaboration with M. MackleyEnhanced kinetic model for CNT suspensions taking into account orientation and aggregation effects: FP & BD simulations. Collaboration with M. Mackley Reduction of Stochastic, Brownian and molecular dynamics simulations.Reduction of Stochastic, Brownian and molecular dynamics simulations. Fast micro-macro simulations of complex flows: Lattice-Boltzmann & Reduced-FP; and many others mathematical topics (stabilization, wavelet bases, mixed formulations, enhanced particles methods, …). Collaboration with T. Phillips.Fast micro-macro simulations of complex flows: Lattice-Boltzmann & Reduced-FP; and many others mathematical topics (stabilization, wavelet bases, mixed formulations, enhanced particles methods, …). Collaboration with T. Phillips.


Download ppt "On the efficient numerical simulation of kinetic theory models of complex fluids and flows Francisco (Paco) Chinesta & Amine Ammar LMSP UMR CNRS – ENSAM."

Similar presentations


Ads by Google