Presentation is loading. Please wait.

Presentation is loading. Please wait.

Disentangling dynamic and geometric distortions Federico Marulli Dipartimento di Astronomia, Università di Bologna Marulli, Bianchi, Branchini, Guzzo,

Similar presentations


Presentation on theme: "Disentangling dynamic and geometric distortions Federico Marulli Dipartimento di Astronomia, Università di Bologna Marulli, Bianchi, Branchini, Guzzo,"— Presentation transcript:

1 Disentangling dynamic and geometric distortions Federico Marulli Dipartimento di Astronomia, Università di Bologna Marulli, Bianchi, Branchini, Guzzo, Moscardini and Angulo 2012, arXiv:1203.1002 Bianchi, Guzzo, Branchini, Majerotto, de la Torre, Marulli, Moscardini and Angulo 2012, arXiv:1203.1545

2 Bologna cosmology/clustering group Carmelita Carbone: Victor Vera (PhD): Fernanda Petracca (PhD): Carlo Giocoli: Roberto Gilli: Michele Moresco: Lauro Moscardini: Andrea Cimatti: Federico Marulli: N-body with DE and neutrinos + forecasts BAO with new statistics DE and neutrino constraints from ξ (r p, π ) HOD and HAM (Halo Abundance Matching) AGN clustering P(k) clustering of galaxy clusters galaxy/AGN evolution RSD + Alcock-Paczynski test + clustering of galaxies/AGN

3 Redshift space distortions Ra, Dec, Redshift  comoving coordinates the real comoving distance is: the observed galaxy redshift: z c : cosmological redshift due to the Hubble flow v || : component of the galaxy peculiar velocity parallel to the line-of-sight How to constract a 3D map Geometric distortions Observational distortions Dynamic distortions

4 Dynamic and geometric distortions The two-point correlation function geometric distortions no distortions dynamic distortions dynamic+geometric distortions geometric distortions dynamic+geometric distortions

5 Modelling the dynamical distortions linear model non-linear model model parameters The “dispersion” model

6 Statistical errors on the growth rate bias density δβ/β Bianchi et al. 2012

7 Effect of redshift errors on β and σ 12 Only dynamic distortions δz  small sistematic error on β δβ ~ 5% for all δz Dynamic distortions + δz

8 Effect of geometric distortions Error on β Error on the bias Error on ξ(s)/ξ(r) GD  δβ is negligible Spurious scale dependence in b(r)

9 The Alcock-Paczynski test Steps of the method 1.Choose a cosmological model to convert redshifts into comoving coordinates 2.Measure ξ only 3.Model only the dynamical distortions 4.Go back to 1. using a different test cosmology

10 …next future 10 N-body simulations with massive neutrinos (L=2 Gpc/h) (1e6 CPU hours at CINECA) for:  all-sky mock galaxy catalogues via HOD and box-stacking  all-sky shear maps via box-stacking and ray-tracing  all-sky CMB weak-lensing maps  end-to-end simulations for BAO and RSD statistics  reference skies for future galaxy/shear/CMB-lensing probes  ISW/Rees-Sciama implementation/analysis PI Carmelita Carbone

11 Conclusions systematic error on β of up to 10%, for small bias objects small systematic errors for haloes with more than ~1e13 Msun scaling formula for the relative error on β as a function of survey parameters the impact of redshift errors on RSD is similar to that of small-scale velocity dispersion large redshift errors (σ v >1000km/s) introduce a systematic error on β, that can be accounted for by modelling f(v) with a gaussian form the impact of GD is negligible on the estimate of β GD introduce a spurious scale dependence in the bias AP test  joint constraints on β and Ω M

12 BASICC simulation by Raul Angulo GADGET-2 code ~1448^3 DM particles with mass 5.49e10 Msun/h periodic box of 1340 Mpc/h on a side Λ CDM “concordance” cosmological framework (Ω m =0.25, Ω b =0.045, Ω Λ =0.75, h=0.73, n=1, σ 8 =0.9) DM haloes: FOF M>1e12 Msun/h Z=1 Mock halo catalogues

13 Systematic errors on the growth rate

14 Errors on β on different mass ranges Small masses [M<5e12 Msun/h]  systematic error on β ~ 10% Intermediate masses [5e12<M<2e13 Msun/h]  systematic error is small  the linear model works accurately Large masses [M>2e13 Msun/h]  large random errors

15 Statistical errors vs Volume

16 Effect of redshift errors on β and σ 12

17 Effect of geometric distortions 1D correlation function deprojected correlation

18 Effect of redshift errors on 1D ξ


Download ppt "Disentangling dynamic and geometric distortions Federico Marulli Dipartimento di Astronomia, Università di Bologna Marulli, Bianchi, Branchini, Guzzo,"

Similar presentations


Ads by Google