Presentation is loading. Please wait.

Presentation is loading. Please wait.

New Low Cost & High Performance Transmission Line

Similar presentations


Presentation on theme: "New Low Cost & High Performance Transmission Line"— Presentation transcript:

1 New Low Cost & High Performance Transmission Line
Eun Sub Shim Micro/Nano Systems & Controls Lab. SNU

2 Contents Introduction Survey New Design Conclusion References
HRS t-lines LRS t-lines Best Performances New Design Design Consideration Wet-etched CPW Structure Process Properties Conclusion References

3 Michigan Microstrip (1993-1998)
HRS Michigan Microstrip ( ) [1] SMM (shielded membrane microstrip) Advantage No dielectric loss Self-packaging Loss: < 0.6 ~110 GHz HRS SiO2/Si3N4/SiO2, 1.5 µm Metal: Ti/Au, 1.2 µm Selective etching: EDP Bonding: conductive epoxy

4 Michigan CPW (1998-2002) HRS [2] Membrane CPW MFGC
(micromachined finite ground CPW) Advantage Reduce dielectric loss Simple process Loss: GHz HRS SiO2/Si3N4/SiO2, 1.5 µm Selective etching: EDP Metal: Cr/Au, µm

5 GEC Marconi Instrument CPW (1998)
HRS GEC Marconi Instrument CPW (1998) [3] Trenched CPW Loss: GHz 650 µm-thick Ohm-cm HRS Metal: Al evaporation 1.46 µm CF4 plasma etch

6 SNU CPW (2000) HRS [4] ECPW (elevated), OCPW (overay)
Loss: 1 40 GHz Glass substrate Metal1: Ti/Au electroplate 3 µm Metal2: Cr/Au electroplate 3 µm Thick PR(AZ 4620): 15 µm PR Curing: 200oC

7 LAAS-CNRS CPW (1997, 2003) LRS [5] CPW on Membrane CPW on BCB
Loss: 1 dB for 2,4,6 40 GHz Access port loss is dominant 20 Ohm-cm silicon (350 µm) SiO2/Si3N4, 1.4 µm (0.8/0.6) Metal: 2.5 µm Silicon etch: KOH CPW on BCB Loss: GHz 20 Ohm/cm silicon Deep RIE : 10 µm BCB: 10 µm Metal: Ti/Au, 3 µm Si BCB Metal

8 NIST CPW (1997) LRS [6] Circuit: foundry survice (Magic)
Glass with etch hole 0.6 µm-thick Al pattern in glass 460 µm-thick silicon Hybrid etch process Isotropic etch: XeF2 (16 min) Anisotropic etch: EDP (1h 92o) Loss: 4 40 GHz

9 KAIST air gap lines (2002) LRS [7] Ground electroplating + LIGA x 4
Ti/Cu electroplating, 12 µm Thick Oxidized Porous Silicon (OPS) 10 Ohm-cm silicon substrate Oxide thickness: 20 µm Air gap CPW Loss: GHz

10 KAIST CPW (2003) LRS [8] Thick Oxidized Silicon
Oxide thickness: 7 µm Conductivity: 10 Ohm-cm Ground electroplating + LIGA x 2 PR1: AZ 9260 (10 µm) PR2: ? Ti/Cu electroplating, 10 µm Thick Oxidized Porous Silicon Loss: GHz

11 SNU Thin Film Microstrip (TFMS) line
[9] MMIC 설계에 필요한 집중소자를 BCB위에 제작하여 signal과 같은 상에 위치시키는 구조 제안 BCB 식각시 PR mask 사용 능동소자를 signal과 같은 위치에 놓기 위하여 기판을 깎아서 ground를 낮게 형성함 TFR과 capacitor를 signal과 같은 위치에 형성함 TFMS line loss GHz

12 Cheap & simple process Best Performance HRS LRS Michigan (1993-1998)
Loss: < 0.6 ~110 GHz Three HRS substrates Bonding alignment Back side process LRS KAIST (2003) Loss: GHz Complicated process Cheap & simple process

13 ? Design Consideration Substrate coupling Leakage current path
Isolating transmission line from substrate Field out of substrate Leakage current path Trench, air gap Metal loss Smooth metal surface, Thick metal line Electroplating vs. Sputtering Transition Conventional T-line to New T-line ? OLD NEW

14 Wet-etched CPW Zo=49 Ohm Loss= GHz

15 Structure Minimize substrate coupling No leakage current path
Silicon Metal Minimize substrate coupling No leakage current path Rigid structure (thick metal) Smooth metal surface Simple process 10 um 100 um 100 um 71 um 54.7o 280 um

16 Process Single mask process!! Cheap & Simple Process!!
1. Photolithography 4. CMP Silicon PR Metal 2. KOH etch 5. TMAH etch 3. Electroplating Single mask process!! Cheap & Simple Process!!

17 Attenuation Attenuation 0.21 dB/cm @ 20 GHz 0.57 dB/cm @ 40 GHz

18 Attenuation KAIST CPW paper (20 GHz) KAIST CPW simulation
Fabricated: 0.35 dB/cm Simulation: 0.22 dB/cm KAIST CPW simulation Loss: GHz Wet-etched CPW simulation GHz GHz Comparable to world’s best CPWs GEC Marconi HRS (1998) Michigan HRS (2002) KAIST LRS (2003) 0.2 This work LRS

19 Rigid structure Other CPWs Wet-etched CPW
Membrane type : Michigan, LAAS-CNRS, NIST SiO2/Si3N4 membrane (t<1.5 µm) Suspended metal : KAIST Cu (t=10 µm, w=100 µm) Wet-etched CPW Suspended Metal bar Cu (tmax= 71 µm, w=100 µm)

20 Simple process Single mask process No misalinement effect
Cheap process Cf. other lines Membrane type : Michigan, LAAS-CNRS, NIST Minimum 2 mask is needed Suspended metal : KAIST Minimum 3 mask is needed

21 Conclusion CPW survey New Design: Wet-etched CPW HRS
Michigan ( ) Loss: < 0.6 ~110 GHz LRS KAIST (2003) Loss: GHz  Expensive & Complicated process New Design: Wet-etched CPW Low loss: GHz, 1.19 <100 GHz Rigid structure Single mask process  Low cost & High performance CPW fabrication is possible!!!

22 References [1] L. P. B. Katehi, G. M. Rebeiz, T. M. Weller, R. F. Drayton, H. Cheng and J. F. Whitaker, “Micromachined Circuits for Millimeter- and Sub-millimeter-Wave Applications”, IEEE Antennas and Propagation Magazine, Vol. 35, No. 5, Oct [2] K. J. Herrick, T. A. Schwarz, and L. P. B. Katehi, “Si-Micromachined Coplanar Waveguides for Use in High-Frequency Circuits”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 6, June 1998. [3] S. Yang, Z. Hu, N. B. Buchanan, V. F. Fusco, J. A. C. Steward, Y. Wu, B. M. Armstrong, G. A. Armstrong, and H. S. Gamble, “Characteristics of Trenched Coplanar Waveguide for High-Registivity Si MMIC Applications”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 5, June 1998. [4] J. Park, C. Baek, S. Jung, H. Kim, Y. Kwon and Y. Kim, “Novel Micromachined Coplanar waveguide Transmission Lines for Application in Millimeter-Wave Circuits”, Japanese Journal of Applied Physics, Vol. 39, No. 12B, Dec [5] F. Bouchriha, K. Grenier, D. Dubuc, P. Pons, R. Plana, and J. Graffeuil, “Minimization of Phassive Circuits Losses realized on Low Resistivity Silicon Using Micro-Machining Techniques and Thick Polymer Layers”, 2003 IEEE MTT-S Digest., 2003. [6] V. Milanovic, M. Gaitan, E. D. Bowen, and M. E. Zaghloul, “Micromachined Microwave Transition Lines by Commercial CMOS Fabrication”, IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 5, May [7] I. Jeong, S. Shin, J. Go, J. Lee, C. Nam, and D. Kim “High-Performance Air-Gap Transmission Lines and Inductors for Millimeter-Wave Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 12, Dec [8] E. Park, Y. Choi, B. Kim, J. Yoon, and E. Yoon, “A LOW LOSS TRANSMISSION LINE WITH SHIELDED GROUND”, IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003., Jan [9] 송생섭, 노훈희, 서광석, “Structural improvement of Thin Film Microstrip line for MMIC applications using MCM-D”, 제 11회 한국 반도체 학술대회, Feb


Download ppt "New Low Cost & High Performance Transmission Line"

Similar presentations


Ads by Google