Download presentation
Presentation is loading. Please wait.
Published byBrian Snow Modified over 9 years ago
2
MADISON’S CURRENT WEATHER Madison Weather at 1000 AM CDT 27 JUN 2002 Updated twice an hour at :05 and :25 Temperature: 72F ( 22C) Dewpoint: 59F ( 15C) Relative Humidity: 64% Winds from the NW (330 degs) at 10 mph. Pressure: 1011.3 millibars. Altimeter:29.88 inches of mercury. The prevailing visibility was 10 miles.
3
ATM OCN 100 Summer 2002 2
4
3 CURRENT VISIBLE
5
ATM OCN 100 Summer 2002 4 Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts and Radar
6
ATM OCN 100 Summer 2002 5 Current Surface Winds with Streamlines & Isotachs (“iso” = equal & “tach” = speed) H L L H H L L
7
ATM OCN 100 Summer 2002 6 Yesterday’s High Temperatures ( o F) – (1961-90) Average High Temperatures
8
ATM OCN 100 Summer 2002 7 Current Temperatures ( ° F) & Isotherms (“iso” = equal +”therm” = temperature)
9
ATM OCN 100 Summer 2002 8 Current Temperatures ( o F) – 24 Hrs Ago
10
ATM OCN 100 Summer 2002 9 CURRENT IR
11
ATM OCN 100 Summer 2002 10 Current Dewpoints ( o F)
12
ATM OCN 100 Summer 2002 11 Current UVI Forecast
13
ATM OCN 100 Summer 2002 12 Tomorrow AM Forecast Map
14
ATM OCN 100 Summer 2002 13 ANNOUCEMENTS u Homework #1 is graded & returned today – –See Ans. Key at http://www.aos.wisc.edu/~hopkins/homework u Homework #2 is due Wed. u 1 st Hour Exam is scheduled for Wed. –See Study sheet at http://www.aos.wisc.edu/~hopkins/exams
15
ATM OCN 100 Summer 2002 14 ATM OCN 100 - Summer 2001 LECTURE 7 ATMOSPHERIC ENERGETICS: RADIATION (con’t.) u A. Introduction u B. Radiant Energy - Fundamentals
16
ATM OCN 100 Summer 2002 15 Electromagnetic Radiation Fundamentals
17
ATM OCN 100 Summer 2002 16 Electromagnetic Radiation Emission/Absorption as a function of Temperature Total radiation emitted/absorbed T 4 Peak emission wavelength 1/T
18
ATM OCN 100 Summer 2002 17 ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Inverse Square Relationship –Intensity of incident radiation varies inversely with square of distance from radiation source;
19
ATM OCN 100 Summer 2002 18 ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Inverse Square Relationship –Intensity of incident radiation varies inversely with square of distance from radiation source;
20
ATM OCN 100 Summer 2002 19 INVERSE SQUARE LAW (con’t.)
21
ATM OCN 100 Summer 2002 20 INVERSE SQUARE LAW (con’t.) Earth
22
ATM OCN 100 Summer 2002 21 ELECTROMAGNETIC RADIATION FUNDAMENTALS (con’t.) u Zenith Angle Relationship –Intensity of incoming radiation is: F greatest for vertically oriented rays; F least for rays that parallel horizontal surface. –Intensity of incoming radiation is proportional to cosine of incident angle (defined as zenith angle)
23
ATM OCN 100 Summer 2002 22 COSINE ANGLE RELATIONSHIP (con’t.) Sun at zenith Sun on horizon
24
ATM OCN 100 Summer 2002 23 Solar Altitude Angles at Different Latitudes Fig. 2.6 Moran and Morgan (1997)
25
ATM OCN 100 Summer 2002 24 C. THE EARTH, THE SUN and THE RADIATION LINK u The Sun & Solar radiation –A star with surface temperature 6000 K; –Peak radiation m.
26
ATM OCN 100 Summer 2002 25 Our Sun [Space Environment Center]
27
ATM OCN 100 Summer 2002 26 Our Sun last Night [NOAA Space Environment Center] H-Alpha Image
28
ATM OCN 100 Summer 2002 27 Our Sun from Yesterday [Space Environment Center] H-Alpha Image Helium Image
29
ATM OCN 100 Summer 2002 28 Sunspot Numbers Fig 20.5 Moran & Morgan (1997)
30
ATM OCN 100 Summer 2002 29 Extra-atmospheric Solar Radiation See Fig 2.3, Moran & Morgan (1997)
31
ATM OCN 100 Summer 2002 30 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Receipt of solar radiation by Earth- atmosphere system –Solar Constant Incoming solar radiation received on surface that is: F Perpendicular to sun’s rays F Above atmosphere; F at mean earth-sun distance. –Currently accepted value: 2 cal/cm 2 /min = 1370 Watt/m 2.
32
ATM OCN 100 Summer 2002 31 INVERSE SQUARE LAW (con’t.) Earth
33
ATM OCN 100 Summer 2002 32 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Our place in the Sun -- Annual & diurnal motions of Earth –Solstices & equinoxes –Local noon & sunrise/sunset
34
ATM OCN 100 Summer 2002 33 Earth’s Orbit of Sun – The Cause of the Seasons See Fig. 2.10 Moran & Morgan (1997)
35
ATM OCN 100 Summer 2002 34 Earth’s Orbit of Sun – The Cause of the Seasons See Fig. 2.10 Moran & Morgan (1997)
36
ATM OCN 100 Summer 2002 35 DAYLIGHT-NIGHT (23 JUN)
37
ATM OCN 100 Summer 2002 36 DAYLIGHT-NIGHT (21 SEP)
38
ATM OCN 100 Summer 2002 37 DAYLIGHT-NIGHT (22 DEC)
39
ATM OCN 100 Summer 2002 38 Latitudinal Dependency
40
ATM OCN 100 Summer 2002 39 Solar Altitude Angles at Different Latitudes Fig. 2.6 Moran and Morgan (1997)
41
ATM OCN 100 Summer 2002 40 Our Tilted Earth
42
ATM OCN 100 Summer 2002 41 Sun Paths for Mid Latitudes Fig. 2.14 Moran and Morgan (1997)
43
ATM OCN 100 Summer 2002 42 Diurnal Variation in Solar Altitude Angle at Madison
44
ATM OCN 100 Summer 2002 43 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Disposition of solar radiation in Earth- atmosphere system –Reflected –Scattered –Absorbed –Transmitted u Albedo where... where...
45
ATM OCN 100 Summer 2002 44 ALBEDO u The reflectivity of a surface: u Albedo of surfaces: u Implications
46
ATM OCN 100 Summer 2002 45 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Terrestrial radiation –Emitted from earth-atmosphere system; –Radiating temperature –Peak radiation region m.
47
ATM OCN 100 Summer 2002 46 Terrestrial or Long Wave Radiation Emitted at 300 K See Fig 2.4, Moran & Morgan (1997)
48
ATM OCN 100 Summer 2002 47 Consequences u If more input than loss –Then Radiative heating u If more loss than input –Then Radiative cooling
49
ATM OCN 100 Summer 2002 48 ATM OCN 100 - Summer 2002 LECTURE 8 ATMOSPHERIC ENERGETICS: RADIATION & ENERGY BUDGETS u A. INTRODUCTION: – How does Planet Earth respond to solar heating? F Why does temperature vary spatially? F How do the diurnal and annual temperature cycles develop? – How does Planet Earth maintain a habitable environment?
50
ATM OCN 100 Summer 2002 49 Tropical Storm Keith
51
ATM OCN 100 Summer 2002 50
52
51 B. ENERGY (HEAT) BUDGETS u Energy budget philosophy INPUT = OUTPUT + STORAGE INPUT = OUTPUT + STORAGE u Planetary annual energy budget – Short wave radiation components – Long wave radiation components – Assume INPUT = OUTPUT for entire planet & over year (since)...
53
ATM OCN 100 Summer 2002 52 ANNUAL GLOBAL AVERAGE TEMPERATURE See Fig. 19.9 Moran & Morgan (1997)
54
ATM OCN 100 Summer 2002 53 Planetary Radiative Energy Budget From Geog. 101 UW-Stevens Point
55
ATM OCN 100 Summer 2002 54 Background - The Earth, The Sun & The Radiation Link u INPUT -- Solar Radiation u OUTPUT -- Terrestrial Radiation
56
ATM OCN 100 Summer 2002 55 Background - The Earth, The Sun & The Radiation Link u INPUT -- Solar Radiation –From Sun radiating at temperature 6000 K; –Peak radiation m; –Solar Constant 2 cal/cm 2 /min or 1370 W/m 2
57
ATM OCN 100 Summer 2002 56 Extra-atmospheric Solar Radiation See Fig 2.3, Moran & Morgan (1997)
58
ATM OCN 100 Summer 2002 57 Background - The Earth, The Sun & The Radiation Link u OUTPUT -- Terrestrial radiation –Emitted from earth-atmosphere system; –Radiating temperature –Peak radiation region m.
59
ATM OCN 100 Summer 2002 58 Terrestrial or Long Wave Radiation Emitted at 300 K See Fig 2.4, Moran & Morgan (1997)
60
ATM OCN 100 Summer 2002 59 Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
61
ATM OCN 100 Summer 2002 60 Short-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
62
ATM OCN 100 Summer 2002 61 PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth- atmosphere system –Reflected –Scattered –Absorbed –Transmitted u Albedo
63
ATM OCN 100 Summer 2002 62 PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth-atmosphere system –Reflected –Scattered –Absorbed –Transmitted
64
ATM OCN 100 Summer 2002 63 ALBEDO u The reflectivity of a surface: u Albedo of surfaces: u Implications
65
ATM OCN 100 Summer 2002 64 Short-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
66
ATM OCN 100 Summer 2002 65 PLANETARY ENERGY BUDGETS Short Wave Components u Disposition of solar radiation in Earth- atmosphere system – Reflected – Scattered – Absorbed – Transmitted u Implications Only 70% of available solar radiation used by earth-atmosphere-ocean system!
67
ATM OCN 100 Summer 2002 66 C. THE EARTH, THE SUN & THE RADIATION LINK (con’t.) u Terrestrial radiation –Emitted from earth-atmosphere system
68
ATM OCN 100 Summer 2002 67 Long-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
69
ATM OCN 100 Summer 2002 68 PLANETARY ENERGY BUDGETS Long Wave Components u Disposition of long radiation in Earth-atmosphere system – Emitted – Absorbed – Transmitted
70
ATM OCN 100 Summer 2002 69 PLANETARY ENERGY BUDGETS Long Wave Components (con’t.) u Atmospheric or “Greenhouse” Effect –Background –“Greenhouse Gases” [H 2 O, CO 2, CH 4 ]
71
ATM OCN 100 Summer 2002 70 Selective Absorption of radiation by atmospheric constituents Fig. 2.24 Moran & Morgan (1997)
72
ATM OCN 100 Summer 2002 71 CURRENT VISIBLE
73
ATM OCN 100 Summer 2002 72 CURRENT IR
74
ATM OCN 100 Summer 2002 73 PLANETARY ENERGY BUDGETS Long Wave Components (con’t.) u Atmospheric or “Greenhouse” Effect –Process u Implications
75
ATM OCN 100 Summer 2002 74 Long-wave radiation components of the Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
76
ATM OCN 100 Summer 2002 75 Annual Average Planetary Energy Budget Fig. 4.1 Moran & Morgan (1997)
77
ATM OCN 100 Summer 2002 76 PLANETARY ENERGY BUDGETS Non-Radiative Components u Disposition of non-radiative fluxes in Earth-atmosphere system u Types of non-radiative fluxes – Sensible heat transport – Latent Heat transport u Implications Our planet is habitable!
78
ATM OCN 100 Summer 2002 77 Relative magnitudes of energy flow components from earth’s surface Fig. 4.6 Moran & Morgan (1997)
79
ATM OCN 100 Summer 2002 78 PLANETARY ENERGY BUDGETS (con’t.) u ANNUAL AVERAGE Input = Output Input = Output Absorbed solar = Emitted terrestrial Absorbed solar = Emitted terrestrial u LATITUDINAL DISTRIBUTION – Input & Output Curves – Energy surplus & deficit regions – Meridional energy transport in: F Atmosphere (78% in NH, 92% in SH at 35°) – Air Mass Exchange – Storms F Oceans (22% in NH, 8% in SH at 35°)
80
ATM OCN 100 Summer 2002 79 Annual Average Radiational Energy Budget as a function of latitude Fig. 4.7 Moran & Morgan (1997)
81
ATM OCN 100 Summer 2002 80 Atmospheric Circulation
82
ATM OCN 100 Summer 2002 81 OCEAN CURRENTS
83
ATM OCN 100 Summer 2002 82 Example of Satellite-Based Radiometers Sea Surface Temperatures from SSEC Holy Cross Trondheim
84
ATM OCN 100 Summer 2002 83
85
84 ENERGY BUDGETS (con’t.) u LOCAL ENERGY BUDGETS u THE FORCING (Energy Gain) –Sunlight & Downward IR u THE RESPONSE – Emitted Long Wave Radiation – Temperature & Temperature Variations
86
ATM OCN 100 Summer 2002 85 ENERGY BUDGETS (con’t.) u LOCAL ENERGY BUDGETS u THE FORCING (Energy Gain) – Radiative Controls – Air Mass Controls where…
87
ATM OCN 100 Summer 2002 86 ENERGY BUDGETS (con’t.) u THE FORCING (Energy Gain) –Radiative Controls F Latitude F Clouds F Albedo – Air Mass Controls F Warm Air Advection & Cold Air Advection
88
ATM OCN 100 Summer 2002 87 Effect of Latitude New York City Miami
89
ATM OCN 100 Summer 2002 88
90
89 Effect of Cloud Cover Los Angeles San Francisco
91
ATM OCN 100 Summer 2002 90
92
91 ENERGY BUDGETS (con’t.) u THE RESPONSE – Temperature & Temperature Variations – Features of local energy budgets – Annual F Summer maximum temperature F Winter minimum temperature – Diurnal F Afternoon maximum temperature F Pre-dawn minimum temperature
93
ATM OCN 100 Summer 2002 92 ENERGY BUDGETS (con’t.) u THE FORCING (Energy Gain) – Radiative Controls F Latitude F Clouds F Albedo – Air Mass Controls F Warm Air Advection & Cold Air Advection
94
ATM OCN 100 Summer 2002 93 Examples of (A) Cold Air Advection & (B) Warm Air Advection Fig. 4.11 Moran & Morgan (1997)
95
ATM OCN 100 Summer 2002 94 Surface Weather Map from Today with Isobars & Fronts
96
ATM OCN 100 Summer 2002 95 Surface Weather Map from Today with Isobars & Fronts
97
ATM OCN 100 Summer 2002 96 Current Temperatures ( o F) – 24 Hrs Ago
98
ATM OCN 100 Summer 2002 97 ENERGY BUDGETS (con’t.) u SURFACE FACTORS TO CONSIDER in the Thermal Response – Albedo (reflectivity) – Conductivity – Surface Moisture – Specific Heat Quantity of heat required to change temperature of a unit mass of substance by 1 Celsius degree.
99
ATM OCN 100 Summer 2002 98 Distinguishing Sensible & Latent Heats See Fig 4.3 Moran & Morgan (1997)
100
ATM OCN 100 Summer 2002 99 Thermal Conductivity Example: Change in Snow Cover See Figure 3.6, Moran & Morgan (1997)
101
ATM OCN 100 Summer 2002 100 TEMPERATURE RESPONSE for substances with differing specific heats See Table 3.2, Moran & Morgan (1997)
102
ATM OCN 100 Summer 2002 101 Effect of Large Water Bodies Los Angeles Dallas
103
ATM OCN 100 Summer 2002 102
104
103 Example of Satellite-Based Radiometers Sea Surface Temperatures from SSEC
105
ATM OCN 100 Summer 2002 104
106
105
107
106
108
107 ENERGY BUDGETS (con’t) u Local energy budgets u Features of local energy budgets – Annual F Summer maximum temperature F Winter minimum temperature – Diurnal F Afternoon maximum temperature F Pre-dawn minimum temperature
109
ATM OCN 100 Summer 2002 108
110
109 Daily Heating
111
ATM OCN 100 Summer 2002 110 January Temperatures - Madison, WI (1981-90)
112
ATM OCN 100 Summer 2002 111 July Temperatures - Madison, WI (1981-90)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.