Download presentation
Presentation is loading. Please wait.
Published byDylan Shepherd Modified over 9 years ago
1
Chapter 5 Expectations 主講人 : 虞台文
2
Content Introduction Expectation of a Function of a Random Variable Expectation of Functions of Multiple Random Variables Important Properties of Expectation Conditional Expectations Moment Generating Functions Inequalities The Weak Law of Large Numbers and Central Limit Theorems
3
Introduction Chapter 5 Expectations
4
有夢最美
6
Definition Expectation The expectation (mean), E[X] or X, of a random variable X is defined by:
7
Definition Expectation The expectation (mean), E[X] or X, of a random variable X is defined by: provided that the relevant sum or integral is absolutely convergent, i.e.,
8
Definition Expectation The expectation (mean), E[X] or X, of a random variable X is defined by: provided that the relevant sum or integral is absolutely convergent, i.e., 有些隨機變數不存在期望值。 若存在則為一常數。
9
Example 1 Let X denote #good components in the experiment.
10
Example 2
11
Example 3 驗證此為一 正確之 pdf
12
Example 3
13
Expectation of a Function of a Random Variable Chapter 5 Expectations
14
The Expectation of Y=g(X)
16
Example 4
17
Example 5
18
Moments 某些 g(X) 吾人特感興趣 第 k 次動差 第 k 次中央動差 第ㄧ次動差謂之均數 (mean) 第二次中央動差謂之變異數 (variance)
19
均數、變異數與標準差 X : 為標準差
20
Example 6 X ~ B(n, p) E[X]=? Var[X]=?
21
Example 6 X ~ B(n, p) E[X]=? Var[X]=?
22
Example 6 X ~ B(n, p) E[X]=? Var[X]=?
23
Example 7 X ~ Exp( ) E[X]=? Var[X]=?
24
Summary of Important Moments of Random Variables
25
Expectation of Functions of Multiple Random Variables Chapter 5 Expectations
26
The Expectation of Y = g(X 1, …, X n )
27
Example 8 X Y p(x, y)
28
Example 9
29
Important Properties of Expectation Chapter 5 Expectations
30
Linearity E1. 常數之期望值為常數 E2. X 1, X 2, …, X n 間不須具備任何條件,上項特性均成立。
31
Example 10 令 X 與 Y 為兩連續型隨機變數,證明 E[X+Y] = E[X]+E[Y].
32
A Question 令 X 與 Y 為兩連續型隨機變數,證明 E[X+Y] = E[X]+E[Y]. ?
33
Independence E3. If random variables X 1,..., X n are independent, then
34
Example 11 令 X 與 Y 為兩獨立之連續型隨機變數,證明 E[XY] = E[X]E[Y].
35
A Question 令 X 與 Y 為兩獨立之連續型隨機變數,證明 E[XY] = E[X]E[Y]. X Y ?
36
Example 12 X Y
37
A Question ?
38
The Variance of Sum Define
39
The Variance of Sum
40
The Covariance 差積之期望值
41
The Covariance
42
Example 13
43
A Question X Y ?
44
Properties Related to Covariance E4. E5.
45
Properties Related to Covariance E4. E5. Fact:
46
Properties Related to Covariance E4. E5. E6. E7.
47
Example 14
49
More Properties on Covariance E8.
50
More Properties on Covariance E8. E9.
51
Example 16
54
Theorem 1 Schwartz Inequality
55
Pf) E 求ㄧ = * 使 E 具有最小值 令
56
Theorem 1 Schwartz Inequality Pf) E
57
Theorem 1 Schwartz Inequality Pf) E
58
Corollary E10. Pf)
59
Correlation Coefficient E11.
60
Correlation Coefficient E11. Fact: Is the converse also true?
61
Correlation Coefficient E11. E12. Pf) 0 0
62
Example 18
65
Example 19 2 X: # Y: #
66
Example 19 2 X: # Y: # Method 1: X Y p(x, y)
67
Example 19 2 X: # Y: # Method 2: Facts:
68
Conditional Expectations Chapter 5 Expectations
69
Definition Conditional Expectations
70
Facts a function of X (x) See text for the proof E13.
71
Conditional Variances
72
Example 20
73
Moment Generating Functions Chapter 5 Expectations
74
Moment Generating Functions Moments Moments 動差母函數
75
Moment Generating Functions The moment generating function M X (t) of a random variable X is defined by The domain of M X (t) is all real numbers such that e Xt has finite expectation.
76
Example 21
77
Example 22
78
Summary of Important Moments of Random Variables
79
Moment Generating Functions The moment generating function M X (t) of a random variable X is defined by The domain of M X (t) is all real numbers such that e Xt has finite expectation. 為何 M X (t) 會生動差 ?
80
Moment Generating Functions
81
0 0 1 1 2 2 k k
82
0 0 1 1 2 2 k k
84
Example 23 Using MGF to find the means and variances of
85
Example 23
89
Correspondence or Uniqueness Theorem Let X 1, X 2 be two random variables.
90
Example 24
95
Theorem Linear Translation Pf)
96
Theorem Convolution Pf)...
97
Example 25...
98
Example 25...
99
Example 25...
100
Example 25...
101
Example 25...
102
Example 26
103 0
104 0
105
Theorem of Random Variables’ Sum
106
We have proved the above five using probability generating functions. They can also be proved using moment generating functions.
107
Theorem of Random Variables’ Sum
115
Inequalities Chapter 5 Expectations
116
Theorem Markov Inequality Let X be a nonnegative random variable with E[X] = . Then, for any t > 0, 僅知一次動差對機率値之評估
117
Theorem Markov Inequality Define A discrete random variable Why?
118
Theorem Markov Inequality Define A discrete random variable
119
Example 27 MTTF Mean Time To Failure
120
Example 27 MTTF Mean Time To Failure By MarkovBy Exponential Distribution 東方不敗,但精確性差
121
Theorem Chebyshev's Inequality 知一次與二次動差對機率値之評估
122
Theorem Chebyshev's Inequality
123
Facts:
124
Theorem Chebyshev's Inequality Facts:
125
Example 28
126
此君必然上榜
127
The Weak Law of Large Numbers and Central Limit Theorems Chapter 5 Expectations
128
The Parameters of a Population A population We may never have the chance to know the values of parameters in a population exactly.
129
Sample Mean A population iid random variables iid: identical independent distributions Sample Mean
130
Expectation & Variance of A population
131
Expectation & Variance of A population
132
Expectation & Variance of A population 如果 n 非常大呢 ?
133
Theorem Weak Law of Large Numbers Let X 1, …, X n be iid random variables having finite mean .
134
Theorem Weak Law of Large Numbers Let X 1, …, X n be iid random variables having finite mean . Chebyshev's Inequality
135
Central Limit Theorem Let X 1, …, X n be iid random variables having finite mean and finite nonzero variance 2.
136
Central Limit Theorem Let X 1, …, X n be iid random variables having finite mean and finite nonzero variance 2.
137
Central Limit Theorem
139
= 0 as n
140
Central Limit Theorem 當時 n 分子分母均趨近 0
141
Central Limit Theorem 分子分母均 對 n 微分一次
142
Central Limit Theorem
144
Let X 1, …, X n be iid random variables having finite mean and finite nonzero variance 2.
145
Normal Approximation By the central limit theorem, when a sample size is sufficiently large ( n > 30 ), we can use normal distribution to approximate certain probabilities regarding to the sample or the parameters of its corresponding population.
146
Example 29 Let X i represent the lifetime of i th bulb We want to find n > 30
147
Example 30 n > 30
148
Example 30 20 20.5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.