Presentation is loading. Please wait.

Presentation is loading. Please wait.

Weinberg Salam Model Higgs field SU(2) gauge field U(1) gaugefield complex scalar, SU(2) doublet Y  =1 quark lepton SU(2) U(1)hypercharge 1/3 11 4/3.

Similar presentations


Presentation on theme: "Weinberg Salam Model Higgs field SU(2) gauge field U(1) gaugefield complex scalar, SU(2) doublet Y  =1 quark lepton SU(2) U(1)hypercharge 1/3 11 4/3."— Presentation transcript:

1 Weinberg Salam Model Higgs field SU(2) gauge field U(1) gaugefield complex scalar, SU(2) doublet Y  =1 quark lepton SU(2) U(1)hypercharge 1/3 11 4/3 0  2/3 22 Lagrangian density SU(2)×U(1)gauge symmetry 2 SU(3) 3 13 Lorentz group quark lepton

2 SU(2)×U(1)gauge sym. is broken spontaneously v.e.v. redefinition mass of gauge fields Weinberg angle gauge field mixing mass of  W & Z get massive absorbing . The electromagnetic U(1) gauge symmetry is preserved., electromagnetic coupling constant

3 Yukawa interaction fermion mass term

4 diagonalization Cabibbo-Kobayashi-Maskawa matrix Maki-Nakagawa-Sakata matrix diagonal +h.c.

5 Path Integral Quantization fields eigenstate completeness probability amplitude xnxn xnxn xnxn tntn tntn x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 xnxn cf. coordinate xixi xixi xixi titi titi xixi

6 Path Integral Quantization fields eigenstate completeness x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 cf. coordinate xixi xixi xixi titi titi xixi provability amplitude xnxn xnxn xnxn tntn tntn xnxn H : Hamiltonian

7 : canonical conjugate of eigenstate completeness : canonical conjugate of eigenstate completeness  O((  t i ) 2 ) H titi titi  xixi ・

8 H : Hamiltonian  O((  t i ) 2 ) H L : Lagrangian  xi22Vxi22V  L    N'

9 Path Integral Quantization fields eigenstate completeness x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 cf. coordinate xixi xixi xixi titi titi xixi provability amplitude xnxn xnxn xnxn tntn tntn xnxn  O((  t i ) 2 ) H H : Hamiltonian L : Lagrangian  N'

10 Path Integral Quantization fields eigenstate completeness x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 cf. coordinate xixi xixi xixi titi titi xixi provability amplitude xnxn xnxn xnxn tntn tntn xnxn  N' : Lagrangian density

11 x jx j operator eigenvalue x jx j (x)(x)

12 x jx j x jx j (x)(x)

13 xx a xx b xx a xx b (xa)(xb)(xa)(xb)

14 xx a xx b xx a xx b (xa)(xb)(xa)(xb)

15

16 generating functional functional derivative JJ cf. partial derivative JJ JJ JJ  ( x ) JJ  ( y ) JJ h (xy)(xy)

17 JJ JJ JJ JJ

18 JJ JJ

19

20

21

22 commuting c- 数 anti-commuting c- 数 (Grassman 数 ) 微分 積分

23 cf

24 scalar  と fermion  の系 generating functional

25 need gauge fixing gauge theory is inappropriate because anddoes not have inverse. generating functional gauge boson と fermion  の系

26 gauge fixing

27 Faddeev Popov ghost =1

28

29


Download ppt "Weinberg Salam Model Higgs field SU(2) gauge field U(1) gaugefield complex scalar, SU(2) doublet Y  =1 quark lepton SU(2) U(1)hypercharge 1/3 11 4/3."

Similar presentations


Ads by Google