Download presentation
Presentation is loading. Please wait.
Published byKatrina Gilmore Modified over 9 years ago
1
Weinberg Salam Model Higgs field SU(2) gauge field U(1) gaugefield complex scalar, SU(2) doublet Y =1 quark lepton SU(2) U(1)hypercharge 1/3 11 4/3 0 2/3 22 Lagrangian density SU(2)×U(1)gauge symmetry 2 SU(3) 3 13 Lorentz group quark lepton
2
SU(2)×U(1)gauge sym. is broken spontaneously v.e.v. redefinition mass of gauge fields Weinberg angle gauge field mixing mass of W & Z get massive absorbing . The electromagnetic U(1) gauge symmetry is preserved., electromagnetic coupling constant
3
Yukawa interaction fermion mass term
4
diagonalization Cabibbo-Kobayashi-Maskawa matrix Maki-Nakagawa-Sakata matrix diagonal +h.c.
5
Path Integral Quantization fields eigenstate completeness probability amplitude xnxn xnxn xnxn tntn tntn x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 xnxn cf. coordinate xixi xixi xixi titi titi xixi
6
Path Integral Quantization fields eigenstate completeness x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 cf. coordinate xixi xixi xixi titi titi xixi provability amplitude xnxn xnxn xnxn tntn tntn xnxn H : Hamiltonian
7
: canonical conjugate of eigenstate completeness : canonical conjugate of eigenstate completeness O(( t i ) 2 ) H titi titi xixi ・
8
H : Hamiltonian O(( t i ) 2 ) H L : Lagrangian xi22Vxi22V L N'
9
Path Integral Quantization fields eigenstate completeness x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 cf. coordinate xixi xixi xixi titi titi xixi provability amplitude xnxn xnxn xnxn tntn tntn xnxn O(( t i ) 2 ) H H : Hamiltonian L : Lagrangian N'
10
Path Integral Quantization fields eigenstate completeness x1x1 x1x1 x1x1 t1t1 t1t1 x1x1 cf. coordinate xixi xixi xixi titi titi xixi provability amplitude xnxn xnxn xnxn tntn tntn xnxn N' : Lagrangian density
11
x jx j operator eigenvalue x jx j (x)(x)
12
x jx j x jx j (x)(x)
13
xx a xx b xx a xx b (xa)(xb)(xa)(xb)
14
xx a xx b xx a xx b (xa)(xb)(xa)(xb)
16
generating functional functional derivative JJ cf. partial derivative JJ JJ JJ ( x ) JJ ( y ) JJ h (xy)(xy)
17
JJ JJ JJ JJ
18
JJ JJ
22
commuting c- 数 anti-commuting c- 数 (Grassman 数 ) 微分 積分
23
cf
24
scalar と fermion の系 generating functional
25
need gauge fixing gauge theory is inappropriate because anddoes not have inverse. generating functional gauge boson と fermion の系
26
gauge fixing
27
Faddeev Popov ghost =1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.