Download presentation
Published byMelissa Blankenship Modified over 9 years ago
1
Thermal phase transitions in realistic dense quark matter
Taeko Matsuura (Tokyo) K. Iida (RIKEN BNL) M. Tachibana (RIKEN) T. Hatsuda (Tokyo) Physical Review Letters 93 (2004) hep-ph/ (to appear in PRD)
2
Realistic QCD phase diagram (Nf=3) Idealized QCD phase diagram (Nf=3)
mu,d ~0 and ms ~200 MeV beta equilibrium charge neutral Realistic QCD phase diagram (Nf=3) dm “external fields” μ T mu,d,s =0 Color superconductor (CFL) Idealized QCD phase diagram (Nf=3) Hadron QGP μ T dSC 2SC QGP Hadron mCFL
3
Examples of new phases driven by external fields
system External field pairings New phases liquid 3He A phase magnetic field A1-A2 electron super conductor magnetic impurity pairing with different moms Crystalline Structure (FFLO) color super conductor near Tc m and dm unequal Fermi moms for different flavors (u,d,s) dSC unequal Fermi moms for ( ) and ( )
4
Color Superconductor (without m, dm )
Entangled pairing in color-flavor space (momentum)
5
Realistic quark matter at T~Tc
Why we consider T~Tc ? Effect of the ext. field (m, dm ) prominent Ginzburg-Landau expansion possible (Δ<< Tc ) quark mass ms >> mu,d , beta equilibrium d m i= -qi m e (i=u, d, s) electric neutrality Q=Qquark +Qelectron= 0 color neutrality nR= nB = nG major role minor role
6
Color Superconductor (with m, dm ) near Tc
ms2 μ Ext. fields: Tc ・ What kind of phase structure near Tc? ・ What are the quark & gluon spectra ?
7
Ginzburg-Landau free energy
Near Tc (Δ << Tc) T<Tc T>Tc Δ Corrections from quark mass & charge neutrality color neutrality
8
High density QCD → GL free energy
small external fields m=0, dm= Iida & Baym, PRD (`01)
9
m≠0, dm≠0 Iida,Matsuura,Tachibana,&Hatsuda, PRL (2004)
O(Δ2ms2) Flavor Flavor dependent shift of the GL free energy
10
shift of critical temperature Larger More stable pairing
averaged Fermi mom. More stable pairing
11
T New phase : dSC m , dm ≠0 m ,dm =0 normal normal CFL 2SC dSC mCFL
Second order phase transitions (MFA) CFL 2SC dSC mCFL
12
elementary excitation spectra
Gluons Quasi fermions (Nambu-Goldstone bosons) ●Gluons (Meissner masses) number of massive gluons mCFL 8 dSC 2SC 5
13
T unpaired 2 2 5 5 9 paired 2 1 3 4 ● Gapless quasi-fermions
Cf. Alford, Berges & Rajagopal (`99), M.Huang & I.Shovkovy (`03) normal phase T mCFL dSC 2SC unpaired 2 2 5 5 9 paired 2 1 3 4 p e Unpaired case Paired case
14
summary We studied the phase structure near CSC ⇔ QGP boundary
with strange quark mass and charge neutrality using Ginzburg-Landau theory m and dm lead to Flavor dependent pF Pairing occur between quarks with different pF gapless fermion appears at very close to Tc
15
T μ QGP 2SC dSC mCFL Hadron gCFL,g2SC, uSC, CFLK,FFLO, BEC,・・・
thermal phase structure in the mean-field approx. (MFA) & new dSC phase (this work) T Order of the phase transition may change. (beyond MFA) Matsuura, Iida, Hatsuda, and Baym, PRD (2004) QGP 2SC dSC mCFL Hadron gCFL,g2SC, uSC, CFLK,FFLO, BEC,・・・ μ
16
back up
17
Ginzburg-Landau (T ~Tc) mA2 >0 (always) QCD
Meissner mass k k Ginzburg-Landau (T ~Tc) local coupling to gluons mA2 >0 (always) QCD nonlocal coupling to gluons δ > ×2πkB T mA82 , κ < 0 unstable to FFLO δ < ×2πkB T ← our case mA82 , κ > 0 stable to FFLO 2δ κ:momentum susceptibility Giannakis & Ren (hep-ph/ )
18
T Tc Why color neutrality does not play role ? μe normal μe, μ8 super
19
FFLO pairing μu < μd ku=q + p kd=q – p “BCS” pairing (zero free energy condition) F=E-μN
20
⇒ dT ~ g2 Tc or gTc >> σTc (at high density)
Order of Δ and δT ~σTc Δ~ σTc dT μ Effect of Fluctuation ⇒ dT ~ g2 Tc or gTc >> σTc (at high density)
21
T ~0 vs T ~Tc P A δ<< Tc B C T ~ difference is important T ~Tc average is important
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.