Download presentation
Presentation is loading. Please wait.
Published byIrma Roberts Modified over 9 years ago
1
Performance and Scalability of xrootd Andrew Hanushevsky (SLAC), Wilko Kroeger (SLAC), Bill Weeks (SLAC), Fabrizio Furano (INFN/Padova), Gerardo Ganis (CERN) Jean-Yves Nief (IN2P3), Peter Elmer (U Wisconsin) Les Cottrell (SLAC), Yee Ting Li (SLAC) Computing in High Energy Physics 13-17 February 2006 http://xrootd.slac.stanford.edu xrootd is largely funded by the US Department of Energy Contract DE-AC02-76SF00515 with Stanford University
2
CHEP 13-17 February 20062: http://xrootd.slac.stanford.edu Outline Architecture Overview Performance & Scalability Single Server Performance Speed, latency, and bandwidth Resource overhead Scalability Server and administrative Conclusion
3
CHEP 13-17 February 20063: http://xrootd.slac.stanford.edu authentication (gsi, krb5, etc) Clustering (olbd) lfn2pfn prefix encoding Storage System (oss, drm/srm, etc) authorization (name based) File System (ofs, sfs, alice, etc) Protocol (1 of n) (xrootd) xrootd Plugin Architecture Protocol Driver (XRD)
4
CHEP 13-17 February 20064: http://xrootd.slac.stanford.edu Performance Aspects Speed for large transfers MB/Sec Random vs Sequential Synchronous vs asynchronous Memory mapped (copy vs “no-copy”) Latency for small transfers sec round trip time Bandwidth for scalability “your favorite unit”/Sec vs increasing load
5
CHEP 13-17 February 20065: http://xrootd.slac.stanford.edu Raw Speed I (sequential) Disk Limit Sun V20z 2x1.86GHz Opteron 244 16GB RAM Seagate ST373307LC 73GB 10K rpm SCSI sendfile() anyone?
6
CHEP 13-17 February 20066: http://xrootd.slac.stanford.edu Raw Speed II (random I/O) (file not preloaded)
7
CHEP 13-17 February 20067: http://xrootd.slac.stanford.edu Latency Per Request
8
CHEP 13-17 February 20068: http://xrootd.slac.stanford.edu Event Rate Bandwidth NetApp FAS270: 1250 dual 650 MHz cpu, 1Gb NIC, 1GB cache, RAID 5 FC 140 GB 10k rpm Apple Xserve: UltraSparc 3 dual 900MHz cpu, 1Gb NIC, RAID 5 FC 180 GB 7.2k rpm Sun 280r, Solaris 8, Seagate ST118167FC Cost factor: 1.45
9
CHEP 13-17 February 20069: http://xrootd.slac.stanford.edu Latency & Bandwidth Latency & bandwidth are closely related Inversely proportional if linear scaling present The smaller the overhead the greater the bandwidth Underlying infrastructure is critical OS and devices
10
CHEP 13-17 February 200610: http://xrootd.slac.stanford.edu Server Scaling (Capacity vs Load)
11
CHEP 13-17 February 200611: http://xrootd.slac.stanford.edu ESnet routedESnet SDN layer 2 via USN SLAC to Seattle BW Challenge Seattle to SLAC SC2005 BW Challenge Latency Bandwidth 8 xrootd Servers 4 @ SLAC & 4 @ Seattle Sun V20z w/ 10Gb NIC Dual 1.8/2.6GHz Opterons Linux 2.6.12 1,024 Parallel Clients 128 per server 35Gb/sec peak Higher speeds killed router 2 full duplex 10Gb/s links Provided 26.7% overall BW BW averaged 106Gb/sec 17 Monitored links total I/O Bandwidth (wide area network) http://www-iepm.slac.stanford.edu/monitoring/bulk/sc2005/hiperf.html
12
CHEP 13-17 February 200612: http://xrootd.slac.stanford.edu xrootd Server Scaling Linear scaling relative to load Allows deterministic sizing of server Disk NIC CPU Memory Performance tied directly to hardware cost Underlying hardware & software are critical
13
CHEP 13-17 February 200613: http://xrootd.slac.stanford.edu Overhead Distribution
14
CHEP 13-17 February 200614: http://xrootd.slac.stanford.edu OS Effects
15
CHEP 13-17 February 200615: http://xrootd.slac.stanford.edu Device & File System Effects CPU limited I/O limited 1 Event 2K UFS good on small reads VXFS good on big reads
16
CHEP 13-17 February 200616: http://xrootd.slac.stanford.edu NIC Effects
17
CHEP 13-17 February 200617: http://xrootd.slac.stanford.edu Super Scaling xrootd Servers Can Be Clustered Support for over 256,000 servers per cluster Open overhead of 100us*log 64 (number servers) Uniform deployment Same software and configuration file everywhere No inherent 3 rd party software requirements Linear administrative scaling Effective load distribution
18
CHEP 13-17 February 200618: http://xrootd.slac.stanford.edu Cluster Data Scattering (usage)
19
CHEP 13-17 February 200619: http://xrootd.slac.stanford.edu Cluster Data Scattering (utilization)
20
CHEP 13-17 February 200620: http://xrootd.slac.stanford.edu Low Latency Opportunities New programming paradigm Ultra-fast access to small random blocks Accommodate object data Memory I/O instead of CPU to optimize access Allows superior ad hoc object selection Structured clustering to scale access to memory Multi-Terabyte memory systems at commodity prices PetaCache PetaCache Project SCALLA SCALLA SCALLA Structured Cluster Architecture for Low Latency Access Increased data exploration opportunities
21
CHEP 13-17 February 200621: http://xrootd.slac.stanford.edu Memory Access Characteristics Block size effect on average overall latency per I/O (1 job - 100k I/O’s) Scaling effect on average overall latency clients (5 - 40 jobs) Disk I/O Mem I/O
22
CHEP 13-17 February 200622: http://xrootd.slac.stanford.edu Conclusion System performs far better than we anticipated Why? Excruciating attention to details Protocols, algorithms, and implementation Effective software collaboration INFN/Padova: Fabrizio Furano, Alvise Dorigao Root: Fons Rademakers, Gerri Ganis Alice: Derek Feichtinger, Guenter Kickinger Cornell: Gregory Sharp SLAC: Jacek Becla, Tofigh Azemoon, Wilko Kroeger, Bill Weeks BaBar: Pete Elmer Critical operational collaboration BNL, CNAF, FZK, INFN, IN2P3, RAL, SLAC Commitment to “the science needs drive the technology”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.