Download presentation
Presentation is loading. Please wait.
Published byBeverley Ford Modified over 9 years ago
1
Nonnegative Matrix Factorization via Rank-one Downdate
2
Nonnegative Matrix Factorization
4
560 by 1965 560 by 2 2 by 1965 20 by 28 -2.19 -0.02 -3.19 1.02 2 by 1
5
Singular Value Decomposition (SVD)
6
History
7
History
8
History
9
History
10
History (Algorithms)
12
First observation
13
Power method Computes the leading singular vectors/value (or eigenvector/value) of a matrix 1 2while not converged 3 4 5 6end
14
Example Computes the leading singular vectors/value (or eigenvector/value) of a matrix 2while not converged 3 4 5 6end
15
1 2 3 4 5for all set 6end for Naive approach to NMF using this observation Without step 5, this will simply compute the SVD ( Jordan's algorithm, Camille Jordan 1874. )
16
Second observation
17
Modified power iteration 1 2while not converged 3 4 5 6 7 8end
18
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix A =
19
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix 0.14 0.07 0.64 0.41 0.55 v:
20
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix 0.0 0.0 0.64 0.41 0.55 v:
21
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix v: 0.0 0.0 0.64 0.41 0.55
22
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix u: 0.16 0.21 0.22 0.44 0.74 0.20 v: 0.0 0.0 0.64 0.41 0.55
23
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix u: v: 0.0 0.0 0.64 0.41 0.55 0.0 0.44 0.74 0.20
24
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix u: v: 0.0 0.0 0.64 0.41 0.55 0.0 0.44 0.74 0.20
25
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix u: v: 0.0 0.0 0.60 0.28 0.59 0.0 0.44 0.74 0.20
26
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix u: v: 0.0 0.44 0.74 0.20 0.0 0.0 0.60 0.28 0.59
27
Modified power iteration: Demo Rank-1 submatrix Rank-1 submatrix u: v: 0.0 0.44 0.74 0.20 0.0 0.0 0.60 0.28 0.59 Zero-out!
28
Modified power iteration: Demo A new = Rank-1 submatrix
29
Rank-one Downdata (R1D) 1 2 3 4 5end for
30
Objective function
31
ApproxRankOneSubmatrix(A)
33
Rank-one Downdata (R1D)
35
A simple model for text
36
Generating a corpus in the model
37
Theorem about text
38
LSI
39
R1D
40
Experimental results Information retrieval task –TDT corpus (pilot study, v. 1.3, 1997): news articles Identified topics (first few columns of ): Topic: president, clinton, house, white Topic: bosnian, serbs, bosnia, serb, nato, sarajevo, air, bihac Topic: haiti, military, aristide, haitian, troops, port, invasion, … Topic: simpson, defense, judge, case, jury, trial, angeles, los, court, … Topic: bill, today, senate, republicans, house, congress, republican, …
41
Experimental results For topic: “OJ Simpson trial” (simpson, defense, judge, case, jury, trial) Document 1 Allen Simpson Judge Defence Marcus Court Witness Testify Nicole gloves Document 2 Simpson Judge Defense Statements Opening Jury Legal Yesterday Prosecution Marc los Document 3 Simpson Gloves Case Prosecution Defense Roger Put Fit Today Problems jury Document 4 Simpson Kaelin Police Defense Chicago Testimony Night Knapsack Cnn Blood Witness
42
Theorem about images
43
Experimental results
44
LSI
45
NMF-DIV
46
R1D
47
LSI
48
NMF_DIV
49
NMF_SC
50
R1D
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.