Download presentation
Presentation is loading. Please wait.
Published byValerie Norris Modified over 9 years ago
1
Seminar Topics and Projects Giuseppe Attardi Dipartimento di Informatica Università di Pisa
2
Sentiment Analysis Data from Evalita 2014: Data from Evalita 2014: Corpus of annotated tweets Experiment using Word Embeddings Experiment using Word Embeddings Use DeepNL library: https://github.com/attardi/deepnl Collect positive/negative tweets from Twitter, selecting those which contain positive/negative emoticons. See also: http://districtdatalabs.silvrback.com/modern- methods-for-sentiment-analysis
3
Negation/Speculation Extraction Determine the scope of negative or speculative statements: Determine the scope of negative or speculative statements: The lyso-platelet had no effect MnlI-AluI could suppress the basal-level activity Approach: Approach: Classifier for identifying cues Classifier to determine scope Data Data BioScope collection
4
Corpus of Product Reviews Download reviews from online shop Download reviews from online shop Classify as positive/negative according to stars Classify as positive/negative according to stars Train classifier to assign score Train classifier to assign score
5
Relation Extraction Exploit word embeddings as features + extra hand-coded features Exploit word embeddings as features + extra hand-coded features Use the Factor Based Compositional Embedding Model (FCM) http://www.cs.jhu.edu/~mrg/publications/finer e-naacl-2015.pdf Use the Factor Based Compositional Embedding Model (FCM) http://www.cs.jhu.edu/~mrg/publications/finer e-naacl-2015.pdf http://www.cs.jhu.edu/~mrg/publications/finer e-naacl-2015.pdf http://www.cs.jhu.edu/~mrg/publications/finer e-naacl-2015.pdf SemEval 2014 Relation Extraction data SemEval 2014 Relation Extraction data
6
Entity Linking with Embeddings Experiment with technique: Experiment with technique: R. Blanco, G. Ottaviano, E. Meiji. 2014. Fast and Space-Efficient Entity Linking in Queries. labs.yahoo.com/_c/uploads/WSDM-2015-blanco.pdf
7
Extraction of Semantic Hierarchies Use word embeddings as measure of semantic distance Use Wikipedia as source of text http://ir.hit.edu.cn/~jguo/papers/acl2014- hypernym.pdf http://ir.hit.edu.cn/~jguo/papers/acl2014- hypernym.pdf Aconitum Ranuncolacee Plant Organism
8
Suggested Topics for Seminars
9
Clustering Singular Value Decomposition Singular Value Decomposition S. Osiński, D. Weiss. 2004. Conceptual Clustering Using Lingo Algorithm: Evaluation on Open Directory Project Data. http://www.cs.put.poznan.pl/dweiss/site/publicatio ns/download/iipwm-osinski-weiss-stefanowski- 2004-lingo.pdf S. Osiński, D. Weiss. 2004. Conceptual Clustering Using Lingo Algorithm: Evaluation on Open Directory Project Data. http://www.cs.put.poznan.pl/dweiss/site/publicatio ns/download/iipwm-osinski-weiss-stefanowski- 2004-lingo.pdf http://www.cs.put.poznan.pl/dweiss/site/publicatio ns/download/iipwm-osinski-weiss-stefanowski- 2004-lingo.pdf http://www.cs.put.poznan.pl/dweiss/site/publicatio ns/download/iipwm-osinski-weiss-stefanowski- 2004-lingo.pdf S. Osiński, D. Weiss. 2005. A Concept-Driven Algorithm for Clustering Search Results. IEEE Intelligent Systems. http://dollar.biz.uiowa.edu/~nstreet/01439479.pdf S. Osiński, D. Weiss. 2005. A Concept-Driven Algorithm for Clustering Search Results. IEEE Intelligent Systems. http://dollar.biz.uiowa.edu/~nstreet/01439479.pdf
10
Recommender System Y. Koren. R. Bell. C. Volinski. Matrix Factorization Techniques for recommender systems. Y. Koren. R. Bell. C. Volinski. Matrix Factorization Techniques for recommender systems. http://www2.research.att.com/~volinsky/paper s/ieeecomputer.pdf
11
Opinion Mining B. Liu. Sentiment Analisis and Subjectivity. 2010. Handbook of NLP. http://www.cs.uic.edu/~liub/FBS/NLP- handbook-sentiment-analysis.pdf B. Liu. Sentiment Analisis and Subjectivity. 2010. Handbook of NLP. http://www.cs.uic.edu/~liub/FBS/NLP- handbook-sentiment-analysis.pdf http://www.cs.uic.edu/~liub/FBS/NLP- handbook-sentiment-analysis.pdf http://www.cs.uic.edu/~liub/FBS/NLP- handbook-sentiment-analysis.pdf
12
Semantic Role Labeling http://ufal.mff.cuni.cz/conll2009-st/task- description.html http://ufal.mff.cuni.cz/conll2009-st/task- description.html
13
Hierarchical Machine Translation A Hierarchical Phrase-Based Model for Statistical Machine Translation. David Chiang A Hierarchical Phrase-Based Model for Statistical Machine Translation. David Chiang www.isi.edu/~chiang/papers/chiang-acl05.pdf Translation by means of Word Embeddings Translation by means of Word Embeddings J, Bengio 2014.
14
Recognizing Textual Entailment http://www.nist.gov/tac/2011/RTE/ http://www.nist.gov/tac/2011/RTE/
15
Question Answering Watson: Watson: http://www.aaai.org/Magazine/Watson/watson.php http://www.aaai.org/Magazine/Watson/watson.php TAC: TAC: http://www.nist.gov/tac/2008/qa/index.html
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.