Presentation is loading. Please wait.

Presentation is loading. Please wait.

MA354 Dynamical Systems T H 2:30 pm– 3:45 pm Dr. Audi Byrne.

Similar presentations


Presentation on theme: "MA354 Dynamical Systems T H 2:30 pm– 3:45 pm Dr. Audi Byrne."— Presentation transcript:

1 MA354 Dynamical Systems T H 2:30 pm– 3:45 pm Dr. Audi Byrne

2 Modeling Change: Dynamical Systems ‘Powerful paradigm’ future value = present value + change equivalently: change = future value – current value (change = current value – previous value)

3 Modeling Change: Dynamical Systems ‘Powerful paradigm’ future value = present value + change equivalently: change = future value – current value

4 Modeling Change: Dynamical Systems ‘Powerful paradigm’ future value = present value + change equivalently: change = future value – current value (change = current value – previous value)

5 Modeling Change: Dynamical Systems A dynamical system is a changing system. Definition Dynamic: marked by continuous and productive activity or change (Merriam Webster)

6 Modeling Change: Dynamical Systems A dynamical system is a changing system. Definition Dynamic: marked by continuous and productive activity or change (Merriam Webster)

7 Historical Context the term ‘dynamical system’ originated from the field of Newtonian mechanics the evolution rule was given implicitly by a relation that gives the state of the system only a short time into the future. Implicit relation: x n+1 = f(x n ) Source: Wikipedia

8 Some Examples of Implicit Relations I.A(k+1)=A (k)*A (k) II.A(k)=5 III.A(k+2)=A (k)+A (k+1) Constant Sequence Fibonacci Sequence

9 Exercise I Generate the first 5 terms of the sequence for rules I given that A (1)=1 and A (2)=1. I. A(k+1)=A (k)*A (k)

10 Exercise I Generate the first 5 terms of the sequence for rule I given that A (1)=1. I. A(k+1)=A (k)*A (k) {1, 1, 1, 1, 1}

11 Exercise II Generate the first 5 terms of the sequence for rule II. II. A(k)=5

12 Exercise II Generate the first 5 terms of the sequence for rule II. II. A(k)=5 {5, 5, 5, 5, 5}

13 Exercise III Generate the first 5 terms of the sequence for rule III given that A (1)=1 and A (2)=1. III. A(k+2)=A (k)+A (k+1)

14 Exercise III Generate the first 5 terms of the sequence for rule III given that A (1)=1 and A (2)=1. III. A(k+2)=A (k)+A (k+1) {1, 1, 2, 3, 5}

15 Dynamical Systems Cont. To determine the state for all future times requires iterating the relation many times— each advancing time a small step. The iteration procedure is referred to as solving the system or integrating the system. Source: Wikipedia

16 Once the system can be solved, given an initial point it is possible to determine all its future points Before the advent of fast computing machines, solving a dynamical system was difficult in practice and could only be accomplished for a small class of dynamical systems. Source: Wikipedia Dynamical Systems Cont.

17 A Classic Dynamical System The double pendulum Source: Wikipedia Evidences rich dynamical behavior, including chaotic behavior for some parameters. Motion described by coupled ODEs. Source: math.uwaterloo

18 The Double Pendulum Chaotic: sensitive dependence upon initial conditions Source: math.uwaterloo These two pendulums start out with slightly different initial velocities.

19 State and State Space A dynamical system is a system that is changing over time. At each moment in time, the system has a state. The state is a list of the variables that describe the system. –Example: Bouncing ball State is the position and the velocity of the ball

20 State and State Space Over time, the system’s state changes. We say that the system moves through state space The state space is an n-dimensional space that includes all possible states. As the system moves through state space, it traces a path called its trajectory, orbit, or numerical solution.

21 Dimension of the State Space n-dimensional As n increases, the system becomes more complicated. Usually, the dimension of state space is greater than the number of spatial variables, as the evolution of a system depends upon more than just position – for example, it may also depend upon velocity.

22 The double pendulum State space: 4 dimensional What are the 4 parameters that the system depends upon? Must completely describe the system at time t.

23 Describing Change Discrete description: Difference Equation Continuous description: Differential Equation

24 Difference Equation A dynamical system may be described by a difference equation. WRITE THIS DOWN A difference equation is a rule that relates the state of a dynamical system at a future time to the state of a dynamical system at an earlier time.

25 Difference Equation  = change = new – old = x n+1 – x n

26 … consider a sequence A={a 0, a 1, a 2,…} The set of first differences is  a 0 = a 1 – a 0,  a 1 = a 2 – a 1,  a 2 = a 3 – a 1, … where in particular the nth first difference is  a n+1 = a n+1 – a n.

27 Homework Assignment 1.1 Problems 1-4, 7-8. Due Wednesday 1/21.

28 Homework Assignment 1.1 Problems 1-4, 7-8. Due Wednesday 1/21. Example (3a) By examining the following sequences, write a difference equation to represent the change during the n th interval as a function of the previous term in the sequence.

29 Example 3(a) (3a) By examining the following sequences, write a difference equation to represent the change during the n th interval as a function of the previous term in the sequence.

30 Example 3(a) (3a) By examining the following sequences, write a difference equation to represent the change during the n th interval as a function of the previous term in the sequence. We’re looking for a description of this sequence in terms of the differences between terms:  a n = change = new – old = x n+1 – x n

31 Example 3(a) (3a) By examining the following sequences, write a difference equation to represent the change during the n th interval as a function of the previous term in the sequence. We’re looking for a description of this sequence in terms of the differences between terms:  a n = change = new – old = x n+1 – x n (1)Find implicit relation for a n+1 in terms of a n (2)Solve  an = a n+1 – a n

32 Example 3(a) (3a) By examining the following sequences, write a difference equation to represent the change during the n th interval as a function of the previous term in the sequence. We’re looking for a description of this sequence in terms of the differences between terms:  a n = change = new – old = x n+1 – x n a n+1 = a n +2 (1)Find implicit relation for a n+1 in terms of a n (2)Solve  an = a n+1 – a n  a n = 2

33 Markov Chain A markov chain is a dynamical system in which the state at time t+1 only depends upon the state of the system at time t. Such a dynamical system is said to be “memory-less”.

34 Class Project: Dynamical System in Excel In groups of 3, we’ll create a dynamical system using the “fill down” function in Excel. I.In groups, decide on an interesting dynamical system that is described by a simple rule for the state at time t+1 that only depends upon the current state. (Markov Chain) Describe your system to the class. II.Model your dynamical system in Excel by producing the states of the system in a table where columns describe different states and rows correspond to different times. (You may need to modify your system in order to implement it in Excel.)


Download ppt "MA354 Dynamical Systems T H 2:30 pm– 3:45 pm Dr. Audi Byrne."

Similar presentations


Ads by Google