Presentation is loading. Please wait.

Presentation is loading. Please wait.

Box 6.3 Evolutionary Psychology Fig 6.17 Bowerbird Nests.

Similar presentations


Presentation on theme: "Box 6.3 Evolutionary Psychology Fig 6.17 Bowerbird Nests."— Presentation transcript:

1

2

3

4

5 Box 6.3 Evolutionary Psychology

6 Fig 6.17 Bowerbird Nests

7 Animals exhibit different degrees of color vision. Four categories of color vision capabilities among mammals: Minimal color vision with only a single kind of cone pigment and must rely on interactions between rods and cones to discriminate wavelength found in raccoons Feeble dichromatic color vision with two kinds of cone pigments but very few cones found in cats Robust dichromatic color vision with two kinds of cones and lots of cones found in dogs Excellent trichromatic color vision Certain primates such as humans and old world monkeys have good trichromatic color vision based on three classes of cone photopigments However, unlike mammals most birds and reptiles have tetrachromatic color vision

8 Mammalian Color VisionMammalian Color Vision

9 Color Vision Almost Reason Enough for Having Eyes Jay Neitz, Joseph Carroll and Maureen Neitz Optics & Photonics News, January 2001, page 28

10 Transduction

11 Evolution of vertebrate visual pigments. James K. Bowmaker, Vision Research 48 (2008) 2022–2041-0

12 Humans and Old World monkeys have three different cone classes short (S) wavelength sensitive cells with maxima near 415–430 nm middle (M) with maxima at 530–537 nm long (L) with maxima at 555–565 nm New World primates have variable cone phenotypes spider monkey are trichromats Cebus and squirrel monkeys, the males and some females are dichromats, while other females are trichromats owl monkey are monochromats New World monkeys have only one cone pigment gene per X- chromosome trichromatic variation in females is based on the presence of allelic diversity at the X-chromosome opsin gene locus only heterozygous females have two genes that encode two different middle-to-long wavelength photopigments Primate Cone Variation

13 The Evolution of Primate Color Vision by Gerald H. Jacobs and Jeremy Nathans Scientific American April 2009 page 60

14 The Evolution of Primate Color Vision by Gerald H. Jacobs and Jeremy Nathans Scientific American April 2009 page 61

15 The Evolution of Primate Color Vision by Gerald H. Jacobs and Jeremy Nathans Scientific American April 2009 page 62

16 The Evolution of Primate Color Vision by Gerald H. Jacobs and Jeremy Nathans Scientific American April 2009 page 62

17 Organization of the Human Trichromatic Cone Mosaic. Heidi Hofer, The Journal of Neuroscience, 2005 25(42):9669 –9679

18 The Evolution of Primate Color Vision by Gerald H. Jacobs and Jeremy Nathans Scientific American April 2009 page 63

19 Gene therapy in colour Robert Shapley Replacing a missing gene in adult colour-blind monkeys restores normal colour vision. How the new photoreceptor cells produced by this therapy lead to colour vision is a fascinating question.

20 Having three cones types does not produce trichromatic vision Cones need to be connected in an opponent system +L/-M -L/+M This requires special circuits from Cones to Bipolar to Ganglion cells Primates have an additional class of “midget” retinal ganglion cell receives its input from a single cone cell midget ganglion cells encode fine spatial detail first evolved to connect single cones to the brain enabled the detection of separate M and L opsins when they appeared in primates Midget ganglion cells are not present in other mammals. Color Vision Requires Opponent Processing


Download ppt "Box 6.3 Evolutionary Psychology Fig 6.17 Bowerbird Nests."

Similar presentations


Ads by Google