Download presentation
Presentation is loading. Please wait.
Published bySilas Arthur Price Modified over 9 years ago
1
Biogenesis of [Fe-S] proteins in Escherichia coli
Frederic Barras, LCB, CNRS, Marseille Biogenesis of [Fe-S] proteins in Escherichia coli Marburg, 21 april 2004
2
Biogenesis of [Fe-S] proteins in Escherichia coli
Background The IscS system: other’s story The Suf system: our story The Csd system: the new story
3
Some [Fe-S] clusters Kiley and Beinert, 2003
Trouver differents types de clusters Kiley and Beinert, 2003
4
Biological functions of [Fe-S] clusters
Electron transfer Sulfur transfer Sensing O2 and derivatives
5
[Fe-S] cluster containing proteins
FNR PJ Kiley
6
[Fe-S] cluster containing proteins Aconitase/IRE-BP
IRE-binding site not accessible IRE-BP No [4Fe-4S] cluster IRE-binding site accessible
7
[Fe-S] cluster containing proteins
SoxR [2Fe-2S]2+ [2Fe-2S]2+ -35 -10 [2Fe-2S]3+ [2Fe-2S]3+ -35 -10 soxS mRNA Pomposiello and Demple, 2001
8
How to make [Fe-S] proteins?
1- Chemist’s answer Apo-protein [Fe-S] protein Fe2+ Na2S DTT
9
How to make [Fe-S] proteins?
2- Biologist’s answer Source of Fe and S? (toxicity) Assembly of [Fe-S] cluster (insertion and folding)
10
Biogenesis of [Fe-S] proteins in Escherichia coli
Background The IscS system: other’s story The Suf system: our story The Csd system: the new story
11
Study of nitrogen fixation in Azotobacter vinelandii
Dr. Dean’s laboratory (1993) Apo-nitrogenase [4Fe-4S] nitrogenase Fe2+ Cysteine DTT NifS
12
Enzymatic activity of Cysteine desulfurases
13
NifS-like gene clusters
A. vinelandii A. Vinelandii (isc) E. coli (isc) iscR nifS iscU iscA hscB hscA fdx R. prowazekii hscB hscA fdx iscS iscS iscU iscA iscA2 NFS ISU1, ISA1, JAC SSQ YAH ARH1 S. cerevisiae Aconitase ou IRE-BP suivant etat redox Frazzon and Dean, 2003 Muhlenhoff and Lill, 2000
14
[Fe-S] cluster assembly scafold
Functions of the isc gene products iscR iscS iscU iscA hscB hscA fdx - Cysteine desulfurase [2Fe-2S] Ferredoxin [2Fe-2S] [Fe-S] cluster assembly scafold H2O2 Molecular chaperones
15
Model ADP ATP HscA B Apo IscU Cysteine [Fe-S] IscS S Alanine Cysteine
IscA [Fe-S] [Fe-S] Fdx Alanine
16
3 NifS-like in E. coli iscS csdA (CSD) sufS (csdB) location 53.7’
37.8’ 63.4’ Cysteine Selenocysteine 0.38 3.1 0.9 6.2 0.02 5.5 I II II AminotransferaseClass V SSGSACTS RXGHHCA + + Structure 3D
17
Loci containing NifS homologues in E. coli
iscR iscS iscU iscA sufA sufB sufC sufD sufS sufE csdA ygdK ygdL
18
Biogenesis of [Fe-S] proteins in Escherichia coli
Background The IscS system: other’s story The Suf system: our story The Csd system: the new story
19
Erwinia chrysanthemi Enterobacteria Plant pathogen
Search for virulence genes by transposon mutagenesis Beaulieu and van Gijsegem, J Bact, 1990
20
Patzer and Hantke, J Bact 1999, Nachin et al., Mol. Microbiol. 2001
pin10: suf genes RT-PCR C PCR sufA sufB sufC sufD sufS sufE ‚ ƒ ‚ ƒ wt - FeSO4 fur - FeSO4 2000 fur + FeSO4 1500 b-glucuronidase actvity 1000 500 wt + FeSO4 200 400 600 800 min Fur regulated operon Patzer and Hantke, J Bact 1999, Nachin et al., Mol. Microbiol. 2001
21
Functional Prediction
sufA sufB sufC sufD sufS sufE IscA Cluster [Fe-S] formation SufB SufD NifS-like Cysteine desulfurase ? Signatures ABC ATPase ? ?
22
Takahashi et al., JBC, 2002
23
Archeoglobus fulgidus Bacillus subtilis Methanococcus jannaschii
sufA sufB sufC sufD sufS sufE Erwinia chrysanthemi Eubacteria Archaebacteria Aquifex aeolicus Archeoglobus fulgidus Bacillus subtilis Methanococcus jannaschii Chlamidiae pneumoniae M. thermoautotrophicum - Chlamidiae trachomatis Pyrococcus abyssi - Deinococcus radiodurans Pyrococcus horikoshii Escherichia coli Mycobacterium tuberculosis Synechocystis spp. Thermotoga maritima Treponema pallidium Xylella fastidiosa -
24
ABC transporter ? No TM No TM Walker A and B boxes C region sufB sufC
sufD No TM No TM Walker A and B boxes C region
25
SufC exhibits ATPase activity
4,5 4 3,5 3 Vm: 4.45 mmole min-1 2,5 M . min-1 2 Km: 0.29 mM m 1,5 1 0,5 0,5 1 1,5 2 [ATP] (mM)
26
Interactions SufB-SufC SufD-SufC
Yeast Two-Hybrid SufB SufC SufD SufB SufC SufD LexA
27
SufC and SufB are cytoplasmic
Total Peri Cyto Mbrs Total Peri Cyto Mbrs SufC (chromosomal) Ha-SufB (plasmidic) SufC (plasmidic) Total Peri Cyto Mbrs Total Peri Cyto Mbrs MsrA MsrA OutF OutF Cel5 Cel5
28
Suf C: an unorthodox cytoplasmic ABC ATPase
SufB SufC ATP SufD ADP Nachin et al., EMBO J. 2003
29
Fe-S cluster transfer from HoloSufA/IscA to apoBiotin Synthase.
X holoSufA holoIscA (Fe2+ and S2-) Mature BioB Ollagnier de Choudens et al., JBC 2003
30
Fe-S transfer « en bloc »
ApoBioB was incubated with 5 mM DTT and a two-fold molar excess of either holoSufA (X) or holoIscA () or a four-fold molar excess of Fe2+ and S2- () and increasing concentrations of bathophenantroline. After 30 minutes incubation at 18°C, biotin synthase activity was measured.
31
SufB SufC ATP SufD ADP Fe-S SufA Apoprotein [Fe-S] Protein [Fe-S]
32
Biochemical analysis Vm (units/mg) SufS 0.02 Csd 1.1 IscS 0.38
Units : µmol Ala / min
33
Structural studies Flexible loop Black: IscS from T. maritima
Cys324 Flexible loop Black: IscS from T. maritima White: SufS from E. coli Mihara, H. et al. (2002) J. Biochem. 131, IscS from E. coli Cupp-Vickery, JR et al. (2004) J. Mol. Biol. 330,1049.
34
SufS is activated by SufE
Cysteine SufS+SufE SufS+SufE Selenocysteine SufS Loiseau et al., JBC 2003
35
Biochemical analysis Vm (units/mg) SufS 0.021 SufS+SufE 0.750
SufS(C369S) 0.0006 SufS(C369S)+SufE 0.001
36
Sulfur transfer from SufS to SufE
B C
37
Alanine Cysteine SufS-S364-SH SufS-S364H SufE-S51H SufE-S51-SH DTT « S2- »
38
Suf : a [Fe-S] insertion machinery
SufB SufE SufS Cysteine S2- SufC ATP SufD ADP Fe-S SufA Apoprotein [Fe-S] Protein [Fe-S] Fe 2+ ???
39
Physiological role of Suf in E. coli
wt +PMS 16+/-2 313+/-1 36+/-9 ratio 13% 244% 97% sufC +PMS 9+/-2 283+/-3 39+/-6 ratio 6% 228% 111% Fumarase Glut Synthase PGM 126+/-16 138+/-13 128+/-2 124+/-4 37+/-6 35+/-10
40
MM + glycerol MM + gluconate gluconate 6PGDH (Fe-S) GND
41
Suf protects oxygen labile
Hypothesis Suf protects oxygen labile [Fe-S] clusters
42
Iron acquisition in E. chrysanthemi: an essential virulence factor
Fe3+ Chr=chrysobactin
43
Suf and iron acquisition in E. chrysanthemi
MM+dipyridyl Strains - +Fe3+chryso +FeCl 3 cbs 19 1 20 1 sufB cbs 12 1 20 1 sufC cbs 20 1 sufD cbs 20 1 Hypothesis: Suf is important for iron acquisition A basis for importance of Suf in virulence ?
44
Biogenesis of [Fe-S] proteins in Escherichia coli
Background The IscS system: other’s story The Suf system: our story The Csd system: the new story?
45
The new story Csd ygdK ygdL Cysteine desulfurase SufE-like ThiF-like
46
Thiamine biosynthesis early steps
ThiF ATP O SH ThiS O OH ThiS O OAMP ThiS ThiF+ThiI+ThiJ IscS
47
complex Csd/YgdK/YgdL
Molecular analysis complex Csd/YgdK/YgdL Csd YgdK YgdL
48
Biochemical analysis Vm (units/mg) Csd 1.1 Csd+YgdK 2.5 Csd(C61)+YgdK
ND
49
Biochemical analysis Sulfur transfer Targets ? ? S YgdL S YgdK
Cysteine Csd YgdL active S Alanine
50
Perspectives Iron source ? Mechanistic aspects Role of SufBCD ?
Role of HscAB ? Role of Fdx ? Role of IscA vs IscU? ………… Co-translational insertion vs post-translational repair
51
Perspectives Substrate and/or Environmental specificity of each system ? Suf Isc Csd [Fe-S] Enz-SSH Thiamin Fe S O Fe S Fe S IscS-S-S ThiS Fe S
52
Apoprotein [Fe-S] Protein Oxidized [Fe-S] ROS * [Fe-S] Suf Isc
53
Genetic interaction between Isc and Suf
Synthetic lethality iscS - DsufABCSDE Outen et al., Mol Mic, 2004 Suppression iscS - psufABCSDE Takahashi et al., JBC, 2002 Redundancy?
54
Apoprotein [Fe-S] Protein Oxidized [Fe-S] ROS * [Fe-S] Suf Isc
55
Imminoaspartate + DHAP
Genetic Suppression Imminoaspartate + DHAP Quinolinic acid NAD iscRSUA NAD- /pcsdAygdK NAD+ NadA [4Fe-4S] Redundancy?
56
Apoprotein [Fe-S] Protein Oxidized [Fe-S] ROS * [Fe-S] Csd Suf Isc
57
Growth under iron limitation
Strains Growth under iron limitation (Dipyridyl 0.32mM) sufA + sufB - sufC sufC + psufCK40A sufD sufS sufE sufE + psufEC51S Suf required under iron limitation
58
Strains Growth under iron limitation iscS + sufS + piscS - csdA ygdK sufS + pcsdA-ygdK Suf is specifically required under iron limitation
59
Substrate specificity
Suf Isc Iron assimilation Thionucleosides Fe-S Thiamin Molybdopterin Csd
60
Environmental specificity
Suf Isc H2O2 OxyR IscR [2Fe-2S] Fur Csd Nachin et al., 2001,, Schwartz et al., 2001, Zheng et al., 2001, Hantke, 2002 Lee et al., 2004
61
Sandrine Ollagnier de Choudens
Actors LCB, Marseille Laurent Loiseau Laurence Nachin Collaborators INAPG, Paris Dominique Expert CEA, Grenoble Sandrine Ollagnier de Choudens Marc Fontecave
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.