Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multiplying Polynomials. Distributive Method Multiply each term in the first polynomial, by each term in the second polynomial. Combine like terms Example:

Similar presentations


Presentation on theme: "Multiplying Polynomials. Distributive Method Multiply each term in the first polynomial, by each term in the second polynomial. Combine like terms Example:"— Presentation transcript:

1 Multiplying Polynomials

2 Distributive Method Multiply each term in the first polynomial, by each term in the second polynomial. Combine like terms Example: 5x(6x – 10y + 3) 5x(6x) + 5x(-10y) + 5x (3) 30x ² - 50xy + 15x

3 (4x-5)(2x ² - 3x) 4x(2x ²) + 4x(- 3x) + -5(2x ²) + -5(- 3x) 8x³ + -12x² + -10x² + 15x 8x³ - 22x² + 15x

4 Practice: 1.8x (7x⁴ + 10x) 2.(4x -5)(2x + 9) 3.(2x⁴ - 5x² + 7x)(x⁵ - 7) 4.(2x – y)(3x + 5y) 1.56x ⁵ + 80x² 2.8x² + 26x – 45 3.2x⁹ -14x⁴ -5x⁷ + 35x² + 7x⁶ -49x 4.6x² + 7xy -5y²

5 Box Method Make a box and put one polynomial on the top and one polynomial on the left side Remember to bring the minus/plus signs with the appropiate terms Multiply the terms that align in the same box Combine like terms

6 Example: (x + 3)(2x² -10x -3) (4x -7)(3x – 10) (3xy – 7)(3x + 10y) (x² -5x + 2)(3x² + 6x – 9)

7 Binomial by Binomial FOIL method First Outer Inner Last (4x – 2)(3x + 10) First: 4x(3x) Outer: 4x(10) Inner: -2(3x) Last: -2(10) 12x ² -6x + 40x -20 12x ² + 34x - 20

8 Squaring a polynomial (3x – 5)² First separate the problem (3x-5)(3x-5) Then multiply the two polynomials! 9x² -30x + 25 Example: (2x³ - 4x)²

9 Shortcut =) (a + b)² = a² + 2ab + b² (a-b)² = a² - 2ab + b² Example: (2x³ - 4x)² a = 2x³b = 4x (a-b)² = a² - 2ab + b² (2x³) ² - 2(2x³ )(4x) + (4x) ² 4x⁶ - 16x⁴ + 16x² Example: (4x + 7)²

10 Cubing a polynomial (x -4)³ First expand (x-4)(x-4)(x-4) Multiply the first two polynomials together (x-4)(x-4) X² -8x + 16 (X² -8x + 16)(x-4) Then multiply the product and the last polynomial X³ -12X² + 48x – 64 Example: (2g²+ 4)³ 4g⁶ + 48g⁴ + 96g² + 16

11 (x + 3)(x – 3) X(x) + x(-3) + 3(x) + 3(-3) X² -3x + 3x – 9 X² – 9 Notice pattern?????

12 There is a short cut!!!! Sum & Difference of 2 terms (a +b)(a-b) = a² - b² (x +3)(x-3) a = x b = 3 (x)² - (3)² x² - 9 Practice: (3x- 8)(3x + 8) (4y + 7x)(4y -7x) (10x- 9)(9 + 10x)


Download ppt "Multiplying Polynomials. Distributive Method Multiply each term in the first polynomial, by each term in the second polynomial. Combine like terms Example:"

Similar presentations


Ads by Google