Download presentation
Presentation is loading. Please wait.
Published byMerilyn Griffith Modified over 9 years ago
1
Thinking Mathematically Algebra: Equations and Inequalities 6.6 Solving Quadratic Equations
2
Definition of a Quadratic Equation A quadratic equation in x is an equation that can be written in the general form ax 2 + bx + c = 0, where a, b, and c are real numbers, with a≠0. Linear vs. quadratic
3
Using the FOIL Method to Multiply Binomials (ax + b)(cx +d) = axcx + axd + bcx + bd = acx 2 + (ad + dc)x + bd F: First terms (x 2 term) O: Outside terms (x term) I: Inside terms (x term) L: Last terms (constant term) An application of the Distributive Property
4
Example: Multiplying Binomials Exercise Set 6.6 #3 (x - 5)(x + 3)
5
Factoring a Trinomial The inverse of FOIL Exercise Set 6.6 #11, #13, #17, #21 x 2 -2x - 15 x 2 – 8x + 15 x 2 – 8x + 32 2x 2 + 7x + 3
6
The Zero-Product Principle If the product of two factors is zero, then one (or both) of the factors must have a value of zero. If AB = 0, then A = 0 or B = 0. Solution set contains two answers.
7
Solving a Quadratic Equation Using the Zero-Product Principle Exercise Set 6.6 #33 (x – 8)(x + 3) = 0
8
Using Factoring to Solve a Quadratic Equation Exercise Set 6.6 #37, 41 x 2 + 8x + 15 = 0 x 2 – 4x = 21
9
Thinking Mathematically Algebra: Equations and Inequalities 6.6 Solving Quadratic Equations
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.