Download presentation
Presentation is loading. Please wait.
Published byIra McDowell Modified over 9 years ago
1
Partial melting of amphibolites and the genesis of Archaean TTG (and some geodynamical implications) Jean-François Moyen and Gary Stevens Stellenbosch University, South Africa
2
TTG are... Orthogneisses Tonalites, Trondhjemites & Granodiorites (Na-rich series) Fractionnated REE, etc. Largely homogeneous throughout the Archaean Originated by partial melting of amphibolites (hydrated basalts), in garnet stability field
3
Trace elements features of Archaean TTGs Nb-Ta anomaly Sr contents Y & HREE depletion
5
Les « gneiss gris »
6
Minéralogie
7
Eléments majeurs
8
REE
9
Conditions for making TTGs Experimental melts In Garnet stability field (Gt in residue) Melting of hydrous basalt KDKD Gt/melt = 10 - 20 (other minerals ≤ 1) Yb
10
Geodynamic site ? Thick (oceanic or continental) crust (e.g. Oceanic plateau) Subduction Intermediate cases: Shallow subduction (± underplating) Stacked oceanic crust Gt-in
11
Partial melting of amphibolites 15-20 « modern » studies (1990-2000) + Phase diagrams (1970-80) 114 exp. fluid present or saturated 209 exp. « dehydration melting »
12
Goal of the study Review and compilation of published data on experimental melting Elaboration of a global model for amphibolite melting Implications for trace element contents Geological/geodynamical consequences
13
Review and compilation of published work Starting materials Solidus position & melt productivity Mineral stability fields (Moyen & Stevens, subm. to AGU monographs)
14
Starting materials
15
Types de fusion ? 1) Fusion en présence d ’eau Minéraux + H 2 O -> Liquide Exple : Qz+KF+Pg+H 2 O -> Liq Pg+Qz+Amp+H 2 O -> Liq + ? 2) Fusion-déshydratation (« dehydration melting ») Minéraux hydratés -> Minéraux anhydres + H 2 0 Minéraux + H 2 O -> Liquide Exple : Bt+Pg+Qz -> Liq + (Opx+Crd)/Gt Pg+Amp -> Liq + Opx/Gt Min. hydratés -> Min. anhydres + liquide
16
Fluids and melting Fluid-saturated (free fluid phase) Fluid-present (yielded by breakdown of hydrous minerals in the near sub-solidus), limited availability Fluid-absent (dehydration melting) Dry
17
Fluid saturated
18
Dehydration melting
19
Fluid-present
20
Experimental solidus position
21
Melt productivity: dehydration melting
22
Melt productivity: water saturated (+ Qz)
23
Melt productivity: fluid- present (- Qz)
24
Mineral stability limits
25
Control on amphibole stability
26
Control on plagioclase stability
27
Mineralogical models CaO 11.010.09.0 Na 2 O 2.22.83.3 K2OK2O 0.10.51.0 TiO 2 1.22.10.8 Amp. Comp. Ti-rich High Mg# Si poor Int. Ti-poor Low Mg# Si rich KoBThBAB Quartz 0110 Plagioclase 254054 Amphibole 755936 Amp:Plag 3:13:22:3
28
Mineralogical models KoB ThBKoBThBAB
29
Composition of experimental melts
30
Very unlikely for amphibolite melting! Na 2 O contents in experimental melts
31
K2OK2O
32
Major elemen ts A linear model, of the form C/C 0 = a F + b
33
Modelled melts
34
Model vs. TTGs
36
Preliminary conclusions (1) K2O content depends on the source. Only relatively K-poor sources (< 0.7 %) make TTGs … but really depleted sources won’t. This means that K-rich amphibolites can indeed melt into granites (Sisson et al., 2005) With appropriate sources, tonalites & trondjhemites occur for F = 20-40 % (900- 1100 °C)
37
Model for trace element ClCl = C0C0 F + D (1 - F) Experimental data D = Kd i. X i Arbitrary Litterature
38
KoB ThBKoBThBAB Trace elements contents of the 3 sources
39
Melt proportions KoBThBAB
40
Mineral proportions: amphibole and plagioclase KoBThBAB
41
Mineral proportions: garnet KoBThBAB KDKD Gt/melt = 10 - 20 Yb
42
Mineral proportions: rutile KoBThBAB KDKD Rt/melt = 25 - 150 Nb KDKD Rt/melt = 50 - 200 Ta
43
REE contents in (modelled) melts KoBThBAB
44
REE contents in (modelled) melts KoBThBAB
45
REE contents: La/Yb KoBThBAB
46
Y contents KoBThBAB
47
Sr contents and the role of residual plagioclase (Martin & Moyen, 2001, Geology 30 p 319-322; after Zamora, 2000)
48
Sr/Y KoBThBAB
49
Nb/Ta KoBThBAB
50
Effect of pressure
53
TTG composition as a depth indicator Nb-Ta anomaly and Nb/Ta Sr contents Y & HREE depletion
54
TTG composition as a depth indicator (cont.) HREE depletion Eu anomaly
55
Preliminary conclusions (2) Appropriate depletion in Y, Yb, etc. requires pressures above ca. 15 kbar (rather than 10 kbar = Gt-in) Y, Yb, Sr/Y, Nb/Ta etc. are indicators of melting depth Low- and high-pressure TTGs with contrasted signatures?
56
High P TTGs Low P TTGs Not really TTGs Archaean granulites (and intraplate geotherms) Subduction of young lithosphere (5 Ma) (20 Ma) (50 Ma) Subduction of old lithosphere Tonalites & trondhjemites (F = 20-40 %) Appropriate trace elts. signature High Sr, La/Yb, Nb/Ta Low Y, Yb Low Sr, La/Yb, Nb/Ta High Y, Yb TTG genesis in P-T space
57
A regional example Barberton, South Africa 3.5 to 3.2 greenstone belt and gneisses
58
Swaziland R.S.A. 20 km Crust accretion around BSB 3600-3500 Ma Steynsdorp pluton 3509 ± 7 Ma Ngwane gneisses (Swaziland) 3490 ± 3 to 3644 ± 2 Ma Lower Onverwacht group ca. 3500 Ma Dwalile Suite greenstone remnants Ca. 3500 Ma ?
59
Swaziland R.S.A. 20 km Crust accretion around BSB 3450 Ma Stolzburg, Theespruit, etc. plutons 3443 ± 4 to 3460 ± 5 Ma Tsawela gneisses (Swaziland) 3458 ± 6 to 3437 ± 6 Ma Upper Onverwacht group ca. 3400 Ma
60
Swaziland R.S.A. 20 km Crust accretion around BSB 3220 Ma Kaap Valley, Neelshoogte, Badplaas, etc. plutons ca. 3220 Ma Usutu granodiorite (Swaziland) 3231 ± 4 to 3216 ± 3 Ma Fig Tree and Moodies groups ca. 3200 Ma Dalmein pluton Ca 3220 Ma
61
Crust accretion around BSB 3100 Ma & younger Swaziland R.S.A. 20 km GMS suite: Piggs Peak, Heerenveen & Mpuluzi batholiths Boesmanskop syenite ca. 3107 Ma Ushuswana complex 2900 Ma & K granites 2700-2650 Ma
62
Geochemistry: 3600-3500 Ma Steynsdorp pluton Ngwane gneisses
63
Geochemistry: 3450 Ma event Stolzburg & Theespruit plutons Tsawela gneisses
64
Geochemistry: 3220 Ma event Kaap Valley, Nelshoogte & Badplaas plutons
65
TTG evolution around Barberton Greenstone Belt 3.6 – 3.4 Ga 3.4 – 3.2 Ga
66
Amphibolites with HP relicts
68
Preliminary conclusions (3) TTGs in Barberton record progressively deeper sources This is consistent with progressive steepening or onset of subduction, and could witness the progressive accretion of a continental nucleus and its early growth At 3.2 Ga (true subduction established), the geothermal gradient recorded in some metamorphic rocks is consistent with the gradient corresponding to TTG genesis
69
Secular/Geodynamical implications Progressively cooler gradients ? Early Archaean Late Archaean Modern
70
Geodynamical implications Steepening/onset of subduction ?
71
Preliminary conclusions (4) Secular chemical evolution of TTGs reflects increasing melting depth and increasing interactions with the mantle This is consistent with a subduction origin for TTGs Secular cooling of the Earth makes the melting deeper and deeper along the subducted slab, allowing more and more interactions with the mantle Alternately, this could witness progressive onset of subduction
72
Conclusions TTGs are diverse, and their chemistry reflects the depth of melting; melting occurred mostly at 15-20 kbar, but can have occurred anywhere between 10-12 and 30 kbar. Most TTGs are probably originated in subductions, and interacted with the mantle to some degree The changes in TTG compositions can probably be correlated with changes in tectonic styles – either in terms of secular evolution, or in one single area
73
The Sand River Gneisses Ca. 3.1 Ga TTG gneisses in Messina area, Limpopo Belt, South Africa (R. White, Melbourne, for scale)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.