Download presentation
Presentation is loading. Please wait.
Published byLawrence Harris Modified over 9 years ago
1
Heavy-Quark Diffusion in the Primordial Quark-Gluon Liquid Vector Mesons in Medium and Dileptons in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Strong Interaction Seminar TU München, 26.10.09
2
1.) Intro-I: Probing Strongly Interacting Matter Electromagnetic Probes: penetrating: EM >> R nuc Equilibrium: EM spectral function Im EM (q 0,q; B,T) Information via EM Spectral Function: degrees of freedom (parton vs. hadron) transport properties (EM conductivity, susceptibility) relation to order parameters (chiral symmetry) measure of temperature
3
1.2) Intro-IIa: Low-Mass Dileptons at CERN-SPS CERES/NA45 [2000] m ee [GeV] strong excess around M ≈ 0.5GeV (and M > 1GeV ) little excess in region NA60 [2005]
4
1.2) Intro-IIb: Low-Mass Dileptons SIS + RHIC HADES [2008] awaiting larger system sizes … PHENIX [2008] m ee [GeV] very large low-mass excess awaiting HBD results (run-10) …
5
1.) Introduction 2.) Chiral Symmetry + Vector Mesons EM Emission and Vector Mesons Chiral Symmetry Breaking and a 1 Meson in Medium 3.) Dilepton Spectra in A-A and -A Thermal Emission and NA60 (SPS) Photoproduction and CLAS (JLab) 4.) Conclusions Outline
6
2.1 Thermal Electromagnetic Emission EM Current-Current Correlation Function: e+ e-e+ e- γ Im Π em (M,q) Im Π em (q 0 =q) Thermal Dilepton and Photon Production Rates: Im em ~ [ImD + ImD /10 + ImD /5] Low Mass: -meson dominated
7
But: “Higgs” Mechanism in Strong Interactions: qq attraction “Bose” condensate fills QCD vacuum Spontaneous Chiral Symmetry Breaking 2.2 Chiral Symmetry + QCD Vacuum : isospin + “chiral” (left/right-handed) invariant > > > > qLqL qRqR qLqL - qRqR - - Profound Consequences: effective quark-mass: ↔ mass generation massless Goldstone bosons 0,±, pion pole-strength f = 93MeV “chiral partners” split, M ≈ 0.5GeV: J P =0 ± 1 ± 1/2 ±
8
Weinberg Sum Rule(s) 2.3 Hadron Spectra + Chiral Symm. Breaking Axial-/Vector Correlators pQCD cont. “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] Constituent Quark Mass chiral breaking: |q 2 | ≤ 1 GeV 2 Gellmann Oakes Renner: m 2 f 2 = m q ‹0|qq|0› -
9
2.4 Sum Rules and Order Parameters [Weinberg ’67, Das et al ’67, Kapusta+Shuryak ‘93] QCD-SRs [Hatsuda+Lee ’91, Asakawa+Ko ’92, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05, Kwon et al ‘08] Promising synergy of lQCD and effective models Weinberg-SRs: moments Vector Axialvector
10
> > B *,a 1,K 1... N, ,K … 2.5 -Meson in Medium: Hadronic Interactions D (M,q; B,T) = [M 2 - m 2 - - B - M ] -1 -Propagator: [Chanfray et al, Herrmann et al, RR et al, Koch et al, Klingl et al, Mosel et al, Eletsky et al, Oset et al, Sasaki et al …] = B, M = Selfenergies: Constraints: decays: B,M→ N, scattering: N → N, A, … B / 0 0 0.1 0.7 2.6 [RR,Wambach et al ’99] Meson “Melting” Switch off Baryons
11
2.6 Axialvector in Medium: Dynamical a 1 (1260) + +... = Vacuum: a 1 resonance In Medium: + +... in-medium + propagators substantial broadening of - scattering amplitude consequences for chiral restoration to be elaborated [Cabrera,Jido,Roca+RR ’09 in preparation]
12
3.) Dilepton Spectra in A-A and -A Thermal Dilepton Emission Rate: e+ e-e+ e- Im Π em (M,q; B,T) Thermal Sources: Relevance: - Quark-Gluon Plasma: high mass + temp. qq → e + e , … M > 1.5 GeV, T >T c - Hot + Dense Hadron Gas: M ≤ 1 GeV → e + e , … T ≤ T c - qqqq _ e+ee+e e+ee+e Im Π em ~ Im D
13
3.1 Dilepton Rates: Hadronic vs. QGP dR ee /dM 2 ~ ∫d 3 q f B (q 0 ;T) Im em Hard-Thermal-Loop [Braaten et al ’90] enhanced over Born rate Hadronic and QGP rates “degenerate” around ~T c Quark-Hadron Duality at all M ?! ( degenerate axialvector SF!) [qq→ee] [HTL] -
14
3.2 Dilepton “Excess” Spectra at SPS “average” (T~150MeV) ~ 350-400 MeV (T~T c ) ≈ 600 MeV → m fireball lifetime: FB ~ (6.5±1) fm/c [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08] Thermal Emission Spectrum:
15
3.2.2 NA60 Data vs. In-Medium Dimuon Rates acceptance-corrected data directly reflect thermal rates! M [GeV] [RR,Wambach et al ’99] [van Hees +RR ’07]
16
3.2.3 NA60 Dimuons: Sensitivity to QGP and T c vary critical and chemical-freezeout temperature (T fo ~ 130 MeV fix) overall shape of spectra robust: “duality” of dilepton rate around “T c ”! yields slightly larger for large T c (hadronic volume!), | | < 1fm/c intermediate mass (M>1GeV): QGP vs. hadronic depends on T c Intermediate Mass Region “EoS-B” “EoS-C”
17
3.3 Low-Mass Dileptons at RHIC: PHENIX Successful approach at SPS fails at RHIC
18
3.4 Meson in Cold Nuclear Matter + A → e + e X e+ ee+ e Nuclear Photo-Production: [CLAS/JLab ‘08] [Riek et al ’08] Theoretical Approach: M ee [GeV] Fe - Ti N ≈ 0.5 0 N elementary production amplitude in-medium spectral function + M [GeV] E =1.5-3 GeV
19
4.) Conclusions Electromagnetic Probes - study matter properties in nuclear reactions - low mass: in-medium vector mesons Chiral Symmetry Breaking (Restoration) - chiral partners: - a 1 (degeneracy at T c ) Thermal Dilepton Rates - melting toward T c (quark-hadron duality?) Dilepton Spectra - quantitative agreement at SPS - ok at TJNAF ( -A) - failure at RHIC thus far
20
4.5 EM Probes in Central Pb-Au/Pb at SPS updated fireball (a T =0.045→0.085/fm) very low-mass di-electrons ↔ (low-energy) photons [Srivastava et al ’05, Liu+RR ‘06] Di-Electrons [CERES/NA45] Photons [WA98] [van Hees+RR ‘07]
21
4.8 Axialvector in Medium: Explicit a 1 (1260) > > > > N(1520) … ,N(1900) … a1a1 + +... Exp: - HADES ( A): a 1 →( + - ) - URHICs (A-A) : a 1 → N -1
22
2.5 Cold Nuclear Matter: Photo-Production Fe -Ti N ≈ 0.5 0 + A → e + e X E =1.5-3 GeV [Riek et al ’08] [CLAS/JLab +GiBUU ’08]
23
2.3.2 Acceptance-Corrected NA60 Spectra more involved at p T >1.5GeV: Drell-Yan, primordial/freezeout , … M [GeV]
24
X.) Example for Comprehensive Analysis: NA60 thermal medium radiating from around T c with melted , well-bound J/ with large collectivity Dileptons Charmonium Flow Charmonium Production
25
2.4 Spectral Function at Lower Collision Energies largest sensitivity for M ≤ 0.4 GeV soft modes! Critical point: - L mixing (q≠0) with m → 0, but: → e + e signal (too) weak
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.