Download presentation
Presentation is loading. Please wait.
Published byAileen Elinor Jefferson Modified over 9 years ago
3
R AOULT ’ S L AW The partial vapour pressure of a component in a mixture is equal to the vapour pressure of the pure component at that temperature multiplied by its mole fraction in the mixture.
4
Where P A =saturated vapour pressure of A =saturated vapour pressure of pure A =mole fraction of A in the solution
5
Raoult’s Law is obeyed by mixtures of similar compounds they are said to form IDEAL SOLUTIONS. The substances A and B form an ideal solution if the intermolecular forces A----A,A----B and B----B are all equal. Examples of ideal mixtures are 1. 2. 3. hexane and heptane benzene and methylbenzene propan-1-ol and propan-2-ol
6
V APOUR P RESSURE / C OMPOSITION D IAGRAMS FOR I DEAL M IXTURE L IQUIDS. P total =P A +P B
7
The partial vapour pressure of A at a particular temperature is proportional to its mole fraction. If you plot a graph of the partial vapour pressure of A against its mole fraction, you will get a straight line.
8
The mole fraction of B falls as A increases so the line will slope down rather than up. As the mole fraction of B falls, its vapour pressure will fall at the same rate.
9
B OILING P OINT / C OMPOSITION D IAGRAM FOR I DEAL M IXTURES Notice again that the vapour is much richer in the more volatile component B than the original liquid mixture was.
11
The diagram just shows what happens if you boil a particular mixture of A and B. Notice that the vapour over the top of the boiling liquid has a composition which is much richer in B - the more volatile component.
12
Solutions of liquids which do not obey Raoult's Law are called non-ideal solutions. Raoult's Law There are two types of non ideal solutions 1.positive Deviation from Raoult's law 2. Negative Deviation From Raoult’s Law
13
Solutions which have a vapour pressure greater than that predicted from Raoult’s Law are said to show a positive deviation from the law. E.g. Hexane and ethanol This is where the A--B interaction is weaker than the A--A and the B--B interactions. As a result the molecules escape from the mixture more easily than for an ideal solution.
14
V APOUR P RESSURE C OMPOSITION C URVE F OR N ON I DEAL SOLUTIONS 1) POSITIVE DEVIATION Maximum vapour pressure This vapour pressure is greater than any other composition and either of the pure liquids
15
B OILING T EMPERATURE -C OMPOSITION C URVES F OR N ON I DEAL S OLUTIONS 1) POSITIVE DEVIATION Minimum boiling point azeotrope The same mixture will have a minimum boiling point lower than any other composition and either of the pure liquids
16
Solution with a vapour pressure lower than the calculated values are said to show a negative deviation. E.g. Nitric acid and water This is where the A--B interaction is greater than the A--A and the B--B interactions. It is more difficult for the molecules to escape from the mixture than for an ideal mixture.
17
V APOUR P RESSURE -C OMPOSITION C URVE F OR N ON I DEAL S OLUTIONS 2) NEGATIVE DEVIATION Minimum vapour pressure Which is less than any other composition and either of the pure liquids.
18
B OILING T EMPERATURE -C OMPOSITION C URVE F OR N ON I DEAL S OLUTIONS 2) NEGATIVE DEVIATION Maximum boiling point azeotrope This means there is a maximum boiling point which is higher than any other composition and either of the pure liquids
19
N OTE THE TERMS USED Minimum boiling point azeotrope Maximum boiling point azeotrope
20
S IMPLE D ISTILLATION Simple distillation is designed to evaporate a volatile liquid from a solution of non-volatile substances; the vapour is then condensed in the water condenser and collected in the receiver.
21
F RACTIONAL D ISTILLATION Fractional distillation is used to separate the components of a mixture(miscible) of liquids by means of the difference in their boiling temperatures.
22
A mixture rich in the most volatile component distils over at the top of the column, where the thermometer registers its boiling temperature. As distillation continues the temperature rises towards the boiling temperature of the next most volatile component. The receiver is changed to collect the second component.
23
F UELS ARE OBTAINED FROM CRUDE OIL BY FRACTIONAL DISTILLATION
25
D ISTILLATION A T R EDUCED P RESSURE High boiling liquids and many liquids which have a tendency to decompose near their boiling temperatures are often purified by distillation under reduced pressure, since lowering the pressure dramatically reduces the temperature at which a liquid will distil. Distillation under reduced pressure always carries a slight risk of the apparatus *imploding. *imploding -to collapse inwardly with force as a result of the external pressure being greater than the internal pressure, or cause something to collapse inwardly
26
V ACUUM D ISTILLATION Vacuum distillation is distillation at a reduced pressure. Since the boiling point of a compound is lower at a lower external pressure, the compound will not have to be heated to as high a temperature in order for it to boil
27
Vacuum Distillation Used to distill compounds that have High boiling point undergoes decomposition on heating at atm pressures Or
28
S TEAM D ISTILLATION Steam distillation operates on the principle that immiscible liquids exert their own vapour pressure so that when the mixture boils the sum of the vapour pressure equals one Steam distillation is a method of distilling a compound at a temperature below its normal boiling point.
29
S TEAM D ISTILLATION Ideal for separation of organic compounds Simple calculation Total vapour pressure= P 0 A+P0 B e.g. extraction of eucalyptus oil from eucalyptus (oils from plant materials) Purification of phenylamine and nitrobenzene
30
S OLVENT E XTRACTION Liquids that form two layers when mixed provide an opportunity for purification of materials that prefer one layer more than the other. For example, many organic chemicals are liquids that are very non-polar and separate from water because it is quite polar.
31
Partition-when the solute distributes itself between he two immiscible liquids. Partition coefficient(k)-the concentration of the solute in each solvent at equilibrium is a constant ratio and the equilibrium constant for the system. If c U and c L are the concentrations in the upper and lower layers then c U /c L =k k - Only applicable in dilute solutions and it varies with temperature
32
T HE PARTITION COEFFICIENT WILL REMAIN CONSTANT UNDER THESE CONDITIONS : 1.the temperature is constant 2.the solvents are immiscible and do not react with each other 3. The solute does not react associate or dissociate in solvents.
33
S OLVENT E XTRACTION Separated using a separating funnel Partition coefficient Solute in upper layer Solute in lower layer Pdts of organic preparations are often dissolved in water k - Only applicable in dilute solutions and it varies with temperature
34
S IMPLE Q UESTION The mass of iodine used is 0.9656g and 25.0cm 3 of the aqueous layer require 4.40cm 3 of 0.01000 moldm -3 thiosulphate A r (I)=127.
35
T OUGHER QUESTION The product of an organic synthesis, 5.00g of X, is obtained in a solution in 1.00dm 3 of water. Calculate the mass of X that can be extracted from the aqueous solution by 1. 50.0cm 3 of ethoxyethane 2. Two successive portions of 25.0cm 3 of ethoxyethane. The k of X between ethoxyethane and water is 40.0 at room temperature
36
I NDUSTRIAL A PPLICATIONS OF D ISTILLATION Petroleum Rum Fragrance
37
P ETROLEUM
38
BEER VODKA RUM
39
Perfumes and Fragrances
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.