Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2011 Memory Periphery.

Similar presentations


Presentation on theme: "Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2011 Memory Periphery."— Presentation transcript:

1 Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2011 Memory Periphery

2 Today Decode Sensing Penn ESE370 Fall2011 -- DeHon 2

3 Memory Bank Penn ESE370 Fall2011 -- DeHon 3

4 Row Select Logically a big AND –May include an enable for timing in synchronous Penn ESE370 Fall2011 -- DeHon 4 How many transistors (per bit)?

5 How tall is a row? Side length for cell of size: –1000 2 – 600 2 – 100 2 Penn ESE370 Fall2011 -- DeHon 5

6 6 How tall is an AND? Penn ESE370 Fall 2011 -- Townley & DeHon 2 6 6 3 2 2

7 Row Select How can we do better? –Area –Delay –Match to pitch of memory row Penn ESE370 Fall2011 -- DeHon 7

8 Row Select Compute inversions outside array –Just AND appropriate line (bit or /bit) Penn ESE370 Fall2011 -- DeHon 8

9 Row Select Share common terms Multi-level decode Penn ESE370 Fall2011 -- DeHon 9

10 Row Select Same number of lines Half as many AND inputs Penn ESE370 Fall2011 -- DeHon 10

11 Row Select: Precharge NAND Penn ESE370 Fall2011 -- DeHon 11

12 Row Select: Precharge NOR Penn ESE370 Fall2011 -- DeHon 12

13 Sensing Penn ESE370 Fall2011 -- DeHon 13

14 Penn ESE370 Fall2011 -- DeHon 14 SRAM Memory bit

15 Simulation W access =20 Penn ESE370 Fall2011 -- DeHon 15

16 Sense Small Swings What do we have to worry about? Penn ESE370 Fall2011 -- DeHon 16

17 Sense Small Swings Variation Common mode noise Penn ESE370 Fall2011 -- DeHon 17

18 Differential Sense Amp Goal: –Reject common shift Penn ESE370 Fall2011 -- DeHon 18

19 Differential Sense Amp Penn ESE370 Fall2011 -- DeHon 19

20 What doe this do? Output when: –In=Gnd? –In=Vdd? –Transfer curve? Penn ESE370 Fall2011 -- DeHon 20

21 “Inverter” Input high –Ratioed like grounded P Input low –Pulls itself up –Until V dd -V TP Penn ESE370 Fall2011 -- DeHon 21

22 DC Transfer Function Penn ESE370 Fall2011 -- DeHon 22

23 Differential Sense Amp Penn ESE370 Fall2011 -- DeHon 23

24 Diffamp Transfer Function in=/in, looks like “inverter” Deliberately low gain in mid region Penn ESE370 Fall2011 -- DeHon 24

25 Differential Sense Amp “Inverter” output controls PMOS for second inverter Sets PMOS operating point –current Penn ESE370 Fall2011 -- DeHon 25

26 Differential Sense Amp View: –Current mirror –Biases where inverter operating Penn ESE370 Fall2011 -- DeHon 26

27 Differential Sense Amp View: – adjusting the pullup load resistance –Changing the trip point for “inverter” Penn ESE370 Fall2011 -- DeHon 27

28 DC Transfer /in with in=0.5V Penn ESE370 Fall2011 -- DeHon 28

29 DC Transfer Various in Penn ESE370 Fall2011 -- DeHon 29

30 After Inverter Penn ESE370 Fall2011 -- DeHon 30

31 Ramp 50mV Offset Penn ESE370 Fall2011 -- DeHon 31

32 Closeup 50mV Offset Penn ESE370 Fall2011 -- DeHon 32

33 Connect to Column Equalize lines during precharge Penn ESE370 Fall2011 -- DeHon 33

34 Singled-Ended Read Penn ESE370 Fall2011 -- DeHon 34

35 5T SRAM Penn ESE370 Fall2011 -- DeHon 35

36 Single Ended Given same problems –How sense small swing on single-ended case? Penn ESE370 Fall2011 -- DeHon 36

37 Single Ended Need reference to compare against Want to look just like bit line Equalize with bit line Penn ESE370 Fall2011 -- DeHon 37

38 Split Bit Line Split bit-line in half Precharge/equalize both Word in only one half –Only it switches Amplify difference Penn ESE370 Fall2011 -- DeHon 38

39 Open Bit Line Architecture For 1T DRAM Add dummy cells Charge dummy cells to V dd /2 “read” dummy in reference half Penn ESE370 Fall2011 -- DeHon 39

40 Memory Bank Penn ESE370 Fall2011 -- DeHon 40

41 Energy Penn ESE370 Fall2011 -- DeHon 41

42 Single Port Memory What fraction is involved in a read/write? What are most cells doing on a cycle? Reads are slow –Cycles long  lots of time to leak Penn ESE370 Fall2011 -- DeHon 42

43 ITRS 2009 45nm Penn ESE370 Fall2011 -- DeHon 43 High Performance Low Power I sd,leak 100nA/  m50pA/  m I sd,sat 1200  A/  m560  A/  m C g,total 1fF/  m0.91fF/  m V th 285mV585mV C 0 = 0.045  m × C g,total

44 High Power Process V=1V d=1000  =0.5 W access =W buf =2 Full swing for simplicity C sc = 0 –(just for simplicity, typically <C load ) BL: C load =1000C 0 ≈ 45 fF = 45×10 -15 F W N = 2  I leak = 9×10 -9 A P= (45×10 -15 ) freq + 1000×9×10 -9 W Penn ESE370 Fall2011 -- DeHon 44

45 Relative Power P= (45×10 -15 ) freq + 1000×9×10 -9 W P= (4.5×10 -14 ) freq + 9×10 -6 W Crossover freq<200MHz How partial swing on bit line change?  Reduce dynamic energy  Increase percentage in leakage energy  Reduce crossover frequency Penn ESE370 Fall2011 -- DeHon 45

46 Consequence Leakage energy can dominate in large memories Care about low operating (or stand-by) power Use process or transistors with high V th –Reduce leakage at expense of speed Penn ESE370 Fall2011 -- DeHon 46

47 Admin Project –Should Have memory cell –Add drivers and amps Penn ESE370 Fall2011 -- DeHon 47

48 Idea Minimize area of repeated cell Compensate with periphery –Amplification (restoration) Match periphery pitch to cell row/column –Decode –Sensing –Writer Drivers Penn ESE370 Fall2011 -- DeHon 48


Download ppt "Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2011 Memory Periphery."

Similar presentations


Ads by Google