Download presentation
Presentation is loading. Please wait.
Published byGriselda Foster Modified over 9 years ago
1
Penn ESE370 Fall2011 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2011 Memory Periphery
2
Today Decode Sensing Penn ESE370 Fall2011 -- DeHon 2
3
Memory Bank Penn ESE370 Fall2011 -- DeHon 3
4
Row Select Logically a big AND –May include an enable for timing in synchronous Penn ESE370 Fall2011 -- DeHon 4 How many transistors (per bit)?
5
How tall is a row? Side length for cell of size: –1000 2 – 600 2 – 100 2 Penn ESE370 Fall2011 -- DeHon 5
6
6 How tall is an AND? Penn ESE370 Fall 2011 -- Townley & DeHon 2 6 6 3 2 2
7
Row Select How can we do better? –Area –Delay –Match to pitch of memory row Penn ESE370 Fall2011 -- DeHon 7
8
Row Select Compute inversions outside array –Just AND appropriate line (bit or /bit) Penn ESE370 Fall2011 -- DeHon 8
9
Row Select Share common terms Multi-level decode Penn ESE370 Fall2011 -- DeHon 9
10
Row Select Same number of lines Half as many AND inputs Penn ESE370 Fall2011 -- DeHon 10
11
Row Select: Precharge NAND Penn ESE370 Fall2011 -- DeHon 11
12
Row Select: Precharge NOR Penn ESE370 Fall2011 -- DeHon 12
13
Sensing Penn ESE370 Fall2011 -- DeHon 13
14
Penn ESE370 Fall2011 -- DeHon 14 SRAM Memory bit
15
Simulation W access =20 Penn ESE370 Fall2011 -- DeHon 15
16
Sense Small Swings What do we have to worry about? Penn ESE370 Fall2011 -- DeHon 16
17
Sense Small Swings Variation Common mode noise Penn ESE370 Fall2011 -- DeHon 17
18
Differential Sense Amp Goal: –Reject common shift Penn ESE370 Fall2011 -- DeHon 18
19
Differential Sense Amp Penn ESE370 Fall2011 -- DeHon 19
20
What doe this do? Output when: –In=Gnd? –In=Vdd? –Transfer curve? Penn ESE370 Fall2011 -- DeHon 20
21
“Inverter” Input high –Ratioed like grounded P Input low –Pulls itself up –Until V dd -V TP Penn ESE370 Fall2011 -- DeHon 21
22
DC Transfer Function Penn ESE370 Fall2011 -- DeHon 22
23
Differential Sense Amp Penn ESE370 Fall2011 -- DeHon 23
24
Diffamp Transfer Function in=/in, looks like “inverter” Deliberately low gain in mid region Penn ESE370 Fall2011 -- DeHon 24
25
Differential Sense Amp “Inverter” output controls PMOS for second inverter Sets PMOS operating point –current Penn ESE370 Fall2011 -- DeHon 25
26
Differential Sense Amp View: –Current mirror –Biases where inverter operating Penn ESE370 Fall2011 -- DeHon 26
27
Differential Sense Amp View: – adjusting the pullup load resistance –Changing the trip point for “inverter” Penn ESE370 Fall2011 -- DeHon 27
28
DC Transfer /in with in=0.5V Penn ESE370 Fall2011 -- DeHon 28
29
DC Transfer Various in Penn ESE370 Fall2011 -- DeHon 29
30
After Inverter Penn ESE370 Fall2011 -- DeHon 30
31
Ramp 50mV Offset Penn ESE370 Fall2011 -- DeHon 31
32
Closeup 50mV Offset Penn ESE370 Fall2011 -- DeHon 32
33
Connect to Column Equalize lines during precharge Penn ESE370 Fall2011 -- DeHon 33
34
Singled-Ended Read Penn ESE370 Fall2011 -- DeHon 34
35
5T SRAM Penn ESE370 Fall2011 -- DeHon 35
36
Single Ended Given same problems –How sense small swing on single-ended case? Penn ESE370 Fall2011 -- DeHon 36
37
Single Ended Need reference to compare against Want to look just like bit line Equalize with bit line Penn ESE370 Fall2011 -- DeHon 37
38
Split Bit Line Split bit-line in half Precharge/equalize both Word in only one half –Only it switches Amplify difference Penn ESE370 Fall2011 -- DeHon 38
39
Open Bit Line Architecture For 1T DRAM Add dummy cells Charge dummy cells to V dd /2 “read” dummy in reference half Penn ESE370 Fall2011 -- DeHon 39
40
Memory Bank Penn ESE370 Fall2011 -- DeHon 40
41
Energy Penn ESE370 Fall2011 -- DeHon 41
42
Single Port Memory What fraction is involved in a read/write? What are most cells doing on a cycle? Reads are slow –Cycles long lots of time to leak Penn ESE370 Fall2011 -- DeHon 42
43
ITRS 2009 45nm Penn ESE370 Fall2011 -- DeHon 43 High Performance Low Power I sd,leak 100nA/ m50pA/ m I sd,sat 1200 A/ m560 A/ m C g,total 1fF/ m0.91fF/ m V th 285mV585mV C 0 = 0.045 m × C g,total
44
High Power Process V=1V d=1000 =0.5 W access =W buf =2 Full swing for simplicity C sc = 0 –(just for simplicity, typically <C load ) BL: C load =1000C 0 ≈ 45 fF = 45×10 -15 F W N = 2 I leak = 9×10 -9 A P= (45×10 -15 ) freq + 1000×9×10 -9 W Penn ESE370 Fall2011 -- DeHon 44
45
Relative Power P= (45×10 -15 ) freq + 1000×9×10 -9 W P= (4.5×10 -14 ) freq + 9×10 -6 W Crossover freq<200MHz How partial swing on bit line change? Reduce dynamic energy Increase percentage in leakage energy Reduce crossover frequency Penn ESE370 Fall2011 -- DeHon 45
46
Consequence Leakage energy can dominate in large memories Care about low operating (or stand-by) power Use process or transistors with high V th –Reduce leakage at expense of speed Penn ESE370 Fall2011 -- DeHon 46
47
Admin Project –Should Have memory cell –Add drivers and amps Penn ESE370 Fall2011 -- DeHon 47
48
Idea Minimize area of repeated cell Compensate with periphery –Amplification (restoration) Match periphery pitch to cell row/column –Decode –Sensing –Writer Drivers Penn ESE370 Fall2011 -- DeHon 48
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.